Data for this page will be stored and processed here:
/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test
Script to test Shah lab CNV calling using HMMcopy on SE bismark aligned reads. Starting at split fastq files for alignment to hg38.
/home/groups/CEDAR/doe/projects/my_NMT/MCF7_T47D/scNMT_NOMeWorkFlow/samples/raw/*fastq.gz
/home/groups/CEDAR/doe/projects/my_NMT/new_MCF7/scNMT_NOMeWorkFlow/samples/raw/*fastq.gz
Some MCF7 cells were run twice, so I’m going to merge them at the fastq level before alignment.
mkdir /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams
cd /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams
cp /home/groups/CEDAR/doe/projects/my_NMT/MCF7_T47D/scNMT_NOMeWorkFlow/samples/raw/*fastq.gz . & #copy files over
for i in /home/groups/CEDAR/doe/projects/my_NMT/new_MCF7/scNMT_NOMeWorkFlow/samples/raw/*fastq.gz; do outname=`basename $i`; cat $i $outname > merged.${outname}; done & #merge files that were resequenced
for i in merged.*fastq.gz; do unmerged_file=${i:7}; rm $unmerged_file; done & #remove duplicate files and keep merged ones
rename "merged." "" merged*gz #rename to make it consistent
ls *fastq.gz | parallel -j15 fastqc {} & #run 15 parallel instances of fastqc
multiqc -f . &
Setting up bismark alignment as single-end since NMT is known to generate chimeric reads. Setting trimming settings for R1 and R2 separately based on MultiQC output.
I decided to trim the first 25 base pairs for both read 1 and read 2.
bismark_genome_preparation \
--path_to_aligner /opt/installed/bowtie2/bin/bowtie2 \
--verbose \
/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/fasta/
Using trim_galore, which uses cutadapt for trimming reads. Running 15 parallel instances.
ls *fastq.gz | parallel -j15 trim_galore --clip_R1 25 {} & #run 15 parallel instances of fastqc
multiqc -f . & #remake multiqc
Using bismark single-end mode.
cd /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams
bismark \
--genome /home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/fasta/ \
--non_directional \
--gzip \
--parallel 8 \
--single_end \
`ls -m *trimmed.fq.gz | tr -d " " | tr -d "\n" ` &
#ls command generates a comma separated list of files
Merged single end bam files
for i in `ls *_R1_*bam`;
do R1=$i;
R2=`echo $R1 | sed 's/R1/R2/g'`;
outname=`echo $R1 | sed 's/R1/merged/g'`;
samtools cat -@ 20 -o $outname $R1 $R2; done &
Using the bismark deduplication script.
#!/bin/bash
#SBATCH --nodes=1 #request 1 node
#SBATCH --array=1-573
#SBATCH --tasks-per-node=30 ##we want our node to do N tasks at the same time
#SBATCH --cpus-per-task=1 ##ask for CPUs per task (5 * 8 = 40 total requested CPUs)
#SBATCH --mem-per-cpu=2gb ## request gigabyte per cpu
#SBATCH --time=3:00:00 ## ask for 1 hour on the node
#SBATCH --
array_in=`ls /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/*merged_trimmed_bismark_bt2.bam | wc -l`
bam_in=`ls /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/*merged_trimmed_bismark_bt2.bam | awk -v line=$SLURM_ARRAY_TASK_ID '{if (NR == line) print $0}'`
srun deduplicate_bismark \
--single \
--output_dir /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/dedup_bams \
${bam_in}
This takes the input of files that are generated in the hmm_generator function in the R script (files starting with “counts_”)
'''
Created on Feb 21, 2018
@author: dgrewal
https://github.com/shahcompbio/single_cell_pipeline/blob/master/single_cell/workflows/hmmcopy/scripts/correct_read_count.py
Modified by mulqueenr to fit HMMcopy correction output for our own pipeline.
'''
from __future__ import division
import argparse
import numpy as np
import pandas as pd
import statsmodels.formula.api as smf
from statsmodels.nonparametric.smoothers_lowess import lowess
from scipy.stats.mstats import mquantiles
import glob
import warnings
'''
Compute quantile regression curves and select the modal quantile.
'''
# 2nd order polynomial quantile regression
def modal_quantile_regression(df_regression, lowess_frac=0.2):
q_range = range(10, 91, 1)
quantiles = np.array(q_range) / 100
quantile_names = [str(x) for x in q_range]
if len(df_regression) < 10: #need at least 3 values to compute the quantiles
return df_regression
poly2_quantile_model = smf.quantreg('reads ~ gc + I(gc ** 2.0)', data=df_regression)
poly2_quantile_fit = [poly2_quantile_model.fit(q=q) for q in quantiles]
poly2_quantile_predict = [poly2_quantile_fit[i].predict(df_regression) for i in range(len(quantiles))]
poly2_quantile_params = pd.DataFrame()
for i in range(len(quantiles)):
df_regression[quantile_names[i]] = poly2_quantile_predict[i]
poly2_quantile_params[quantile_names[i]] = poly2_quantile_fit[i].params
gc_min = df_regression['gc'].quantile(q=0.10) # integration and mode selection
gc_max = df_regression['gc'].quantile(q=0.90)
poly2_quantile_integration = np.zeros(len(quantiles)+1)
for i in range(len(quantiles)):
params = poly2_quantile_params[quantile_names[i]].tolist()
params.reverse()
poly2 = np.poly1d(params)
integ = poly2.integ()
integrand = integ(gc_max) - integ(gc_min)
poly2_quantile_integration[i+1] = integrand
distances = poly2_quantile_integration[1:] - poly2_quantile_integration[:-1] # find the modal quantile
df_dist = pd.DataFrame({'quantiles': quantiles, 'quantile_names': quantile_names, 'distances': distances})
dist_max = df_dist['distances'].quantile(q=0.95)
df_dist_filter = df_dist[df_dist['distances']<dist_max]
df_dist_filter['lowess'] = lowess(df_dist_filter['distances'], df_dist_filter['quantiles'], frac=lowess_frac, return_sorted=False)
modal_quantile = quantile_names[np.argmin(df_dist_filter['lowess'])]
df_regression['modal_quantile'] = modal_quantile # add values to table
df_regression['modal_curve'] = df_regression[modal_quantile]
df_regression['modal_corrected'] = df_regression['reads'] / df_regression[modal_quantile]
return df_regression
warnings.filterwarnings("ignore")
working_dir="/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test"
files=[name for name in glob.glob(working_dir+'/counts*tsv')]
for infile in files:
df=pd.read_csv(infile,sep="\t")
df['modal_quantile'] = 'NaN'
df['modal_curve'] = 'NaN'
df['modal_corrected'] = 'NaN'
df_ideal = df[df['ideal']==True] # filtering and sorting
df_regression = pd.DataFrame.copy(df_ideal)
df_regression.sort_values(by='gc', inplace=True)
df_regression = modal_quantile_regression(df_regression=df_regression, lowess_frac=0.2) # modal quantile regression
df.loc[df_regression.index, 'modal_quantile'] = df_regression['modal_quantile'] # map results back to full data frame
df.loc[df_regression.index, 'modal_curve'] = df_regression['modal_curve']
df.loc[df_regression.index, 'modal_corrected'] = df_regression['modal_corrected']
df['copy'] = df['modal_corrected']
df = df.rename(columns=({ "modal_corrected" : "cor_gc"}))
df.to_csv(infile[0:-3]+"modal_corrected.tsv", index=False, sep=',', na_rep="NA")
print("Completed:",infile)
Files are from a previous publication by Hisham (here.)[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68355]
#conda install sra-tools #have to set up SRA tools to get fastq files
#conda install bwa-mem
mkdir /home/groups/CEDAR/mulqueen/ref/public_cellline_chipdata/
cd /home/groups/CEDAR/mulqueen/ref/public_cellline_chipdata/
#T47D 3 replicates of input DNA
wget https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos1/sra-pub-run-5/SRR2000691/SRR2000691.1
wget https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos1/sra-pub-run-5/SRR2000692/SRR2000692.1
wget https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos1/sra-pub-run-5/SRR2000693/SRR2000693.1
#MCF7 3 replicates of input DNA
wget https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos1/sra-pub-run-5/SRR2000750/SRR2000750.1
wget https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos1/sra-pub-run-5/SRR2000751/SRR2000751.1
wget https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos1/sra-pub-run-5/SRR2000752/SRR2000752.1
for i in SRR*1; do
fastq-dump --split-3 $i & done & #using sra to fastq-dump data
for i in *fastq; do
gzip $i & done & #gzip those fastqs because I'm not a criminal
mv SRR2000691.1.fastq.gz t74d_input.1.fq.gz
mv SRR2000692.1.fastq.gz t74d_input.2.fq.gz
mv SRR2000693.1.fastq.gz t74d_input.3.fq.gz
mv SRR2000750.1.fastq.gz mcf7_input.1.fq.gz
mv SRR2000751.1.fastq.gz mcf7_input.2.fq.gz
mv SRR2000752.1.fastq.gz mcf7_input.3.fq.gz
#using bowtie2 for alignment
#preparing human genome
wget http://igenomes.illumina.com.s3-website-us-east-1.amazonaws.com/Homo_sapiens/NCBI/GRCh38/Homo_sapiens_NCBI_GRCh38.tar.gz
#alignment of reads using either bwa mem or bowtie2
for i in *fq.gz; do
bwa mem -P -S -t 10 -T 20 /home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/fasta/genome.fa $i 2>>align.log | samtools sort -@ 5 -T . -m 5G - | samtools rmdup -s - $outname; done &
for i in *fq.gz; do
outname=${i::-6}.bam
bowtie2 --threads 20 -x /home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/fasta/Homo_sapiens/NCBI/GRCh38/Sequence/Bowtie2Index/genome -U $i | samtools sort -@ 5 -T . -m 5G - | samtools rmdup -s - $outname; done &
Some functions taken from SCOPE for convenient bam file read in
library(parallel)
library(BSgenome.Hsapiens.UCSC.hg38)
library(WGSmapp)
library(SCOPE)
library(HMMcopy)
library(dplyr)
library(ComplexHeatmap)
library(circlize)
library(ggplot2)
library(patchwork)
library(reshape2)
library(philentropy)
library(dendextend)
setwd("/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/dedup_bams")
#set up single cell bam files from given directory
prepare_bam_bed_obj<-function(resol.){
#Initalization
bamfolder <- "/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/dedup_bams"
bamFile <- list.files(bamfolder, pattern = 'deduplicated.bam$')
#add reference bam files
ref_bamfolder<-"/home/groups/CEDAR/mulqueen/ref/public_cellline_chipdata"
ref_bamFile <- list.files(ref_bamfolder, pattern = '.bam$')
bamdir <- file.path(bamfolder, bamFile)
ref_bamdir<-file.path(ref_bamfolder,ref_bamFile)
sampname_raw <- sapply(strsplit(bamFile, ".", fixed = TRUE), "[", 1)
refname_raw<-substr(ref_bamFile,1, nchar(ref_bamFile)-4)
bamdir<-append(bamdir,ref_bamdir)
sampname_raw<-append(sampname_raw,refname_raw)
#set genomic window size to 500kb
bambedObj <- get_bam_bed(bamdir = bamdir, sampname = sampname_raw, hgref = "hg38",resolution=resol,sex=T)#resolution of 100 = 100kbp
#Compute GC content and mappability for each reference bin.
mapp <- get_mapp(bambedObj$ref, hgref = "hg38")
gc <- get_gc(bambedObj$ref, hgref = "hg38")
values(bambedObj$ref) <- cbind(values(bambedObj$ref), DataFrame(gc, mapp))
return(bambedObj)
}
#modified scope get_coverage_scDNA
read_in_reads<-function(i,seq="single-end"){
bamurl <- bamdir[i]
what <- c("rname", "pos", "mapq", "qwidth")
if (seq == "paired-end") {
flag <- scanBamFlag(isPaired = TRUE,
isUnmappedQuery = FALSE, isNotPassingQualityControls = FALSE,
isFirstMateRead = TRUE)
param <- ScanBamParam(what = what, flag = flag)
bam <- scanBam(bamurl, param = param)[[1]]
}
else if (seq == "single-end") {
flag <- scanBamFlag(isUnmappedQuery = FALSE, isNotPassingQualityControls = FALSE) #removed checking for unpaired
param <- ScanBamParam(what = what, flag = flag)
bam <- scanBam(bamurl, param = param)[[1]]
}
message("Getting coverage for sample ", i, ": ", sampname[i],"...", sep = "")
bam.ref <- GRanges(seqnames = bam$rname, ranges = IRanges(start = bam[["pos"]],width = bam[["qwidth"]]))
bam.ref <- suppressWarnings(bam.ref[countOverlaps(bam.ref,mask.ref) == 0])
Y<- countOverlaps(ref, bam.ref)
ref$counts<-Y
return(Y)
}
#standard read correction
hmm_generator<-function(i){
cellname<-colnames(Y)[i]
dat<-cbind(ref,Y[,i])
colnames(dat)[ncol(dat)]<-"reads"
dat_copy <- suppressWarnings(correctReadcount(dat))
write.table(dat_copy,
file=paste0("counts_",cellname,".tsv"),
sep="\t",quote=F,row.names=T,col.names=T)
return(dat_copy)
}
#standard segmentation
copy_seg_func<-function(i){
dat<-copy_estimate[[i]]
dat<-HMMsegment(dat) #run HMMsegment
segs<-makeGRangesFromDataFrame(dat$segs,keep.extra.columns=T) #make granges object
out_segs_idx<-as.data.frame(findOverlaps(segs,ref_granges)) #overlap GRanges for plotting consistent matrix bins
out_segs<-segs[out_segs_idx$queryHits,]$state #return list of states length of reference bins
return(out_segs)
}
#parameter initials
strength<-rep(1e+30,7)
#e<-rep(0.995,7) #shah suggested for scwgs
e<-rep(0.995,7)
mu<-c(-0.1, 1, 2, 1.5, 2.0, 2.5, 3.0)
#mu <- c(0, 1,2,3,4,5,6) #https://www.nature.com/articles/nmeth.4140.pdf?origin=ppub
lambda<-rep(20,7)
#nu<-rep(2.1,7) #shah suggested for scwgs
nu<-rep(2.1,7)
#kappa<-c(25, 50, 800, 50, 25, 25, 25)
kappa<-c(25, 50, 800, 50, 25, 25, 25)
m<-c(0, 1, 2, 3, 4, 5, 6)
eta<-rep(5e+04,7)
gamma<-rep(3,7)
S<-rep(35,7)
#S<-rep(0.01858295,7)
param<-data.frame(strength=strength,e=e,mu=mu,lambda=lambda,nu=nu,kappa=kappa,m=m,eta=eta,gamma=gamma,S=S)
#Seven copy number states were used; the m values were set to 0, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 for copy number states 0, 1, 2, 3, 4, 5, and 6, respectively;
#the μ values were set to 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 for copy number states 0, 1, 2, 3, 4, 5, and 6, respectively;
#the κ values were set to 25, 50, 800, 50, 25, 25, 25 for copy number states 0, 1, 2, 3, 4, 5, and 6, respectively;
#the e value was set to 0.995; and the S value was set to 35.
#https://www.biorxiv.org/content/10.1101/696179v1.full.pdf suggests e>=0.999999, nu=4 and strength=1e+07
#based on https://www.nature.com/articles/nmeth.4140#Sec8
param$m <- c(0, 0.5, 1, 1.5, 2, 2.5, 3)
param$mu <- c(0, 0.5, 1, 1.5, 2, 2.5, 3)
param$kappa <- c(25, 50, 800, 50, 25, 25, 25)
param$e <- 0.995
param$S <- 35
#Set up genome masking of duplicated regions and gaps
# Get segmental duplication regions
seg.dup <- read.table(system.file("extdata", "GRCh38GenomicSuperDup.tab", package = "WGSmapp"))
# Get hg38 gaps
gaps <- read.table(system.file("extdata", "hg38gaps.txt", package = "WGSmapp"))
#Set up genome masking from SCOPE get_masked_ref function
seg.dup <- seg.dup[!is.na(match(seg.dup[,1], paste('chr', c(seq_len(22), 'X', 'Y'), sep = ''))),]
seg.dup <- GRanges(seqnames = seg.dup[,1], ranges = IRanges(start = seg.dup[,2], end = seg.dup[,3]))
gaps <- gaps[!is.na(match(gaps[,2], paste('chr', c(seq_len(22), 'X', 'Y'), sep = ''))),]
gaps <- GRanges(seqnames = gaps[,2], ranges = IRanges(start = gaps[,3], end = gaps[,4]))
mask.ref <- sort(c(seg.dup, gaps)) # Generate mask region
#generate bam bed object
resol=500
bambedObj<-prepare_bam_bed_obj(resol.=resol) #500 is 500kbp
saveRDS(bambedObj,file="bambedObj.500kbp.rds")
bambedObj<-readRDS(file="bambedObj.500kbp.rds")
ref <- bambedObj$ref
bamdir <- bambedObj$bamdir
sampname <- bambedObj$sampname
#Get read count per bin per cell
Y_out<-mclapply(1:length(sampname),read_in_reads,mc.cores=20)
Y<-do.call("cbind",Y_out)
colnames(Y)<-sampname
ref<-as.data.frame(ref)
row.names(Y)<-paste0(ref$seqnames,":",ref$start,"_",ref$end)
saveRDS(Y,file="rawcount.500kbp.rds")
Y<-readRDS(file="rawcount.500kbp.rds")
#filter Y to cells with >500000 reads
Y<-Y[,colSums(Y)>50000] #with fewer reads i was getting errors, was at 500k, but i want to try to go lower
#Prepare windows with gc and mappability data
ref <- as.data.frame(bambedObj$ref)
ref$gc<-ref$gc/100 #fitting to HMMcopy analysis
ref$chr<-ref$seqname
#ref$chr<-substr(ref$seqname,4,6)
ref<-ref[c("chr","start","end","gc","mapp")]
colnames(ref)<-c("chr","start","end","gc","map")
ref_granges<-makeGRangesFromDataFrame(ref,keep.extra.columns=T) #used in the next few functions for overlapping consistent windows
#Normalize bins
copy_estimate<-lapply(1:ncol(Y),hmm_generator) #correct bins by gc content,
names(copy_estimate)<-colnames(Y)
saveRDS(copy_estimate,file="copyestimate.500kb.rds")
copy_estimate<-readRDS(file="copyestimate.500kb.rds")
#segmentation for plotting
copy_segmentation<-lapply(1:length(copy_estimate),copy_seg_func) #segment genome by copy estimate (log2 of cor.map)
copy_segmentation<-lapply(copy_segmentation,as.numeric)
names(copy_segmentation)<-colnames(Y)
copy_segmentation<-as.data.frame(do.call("cbind",copy_segmentation))
row.names(copy_segmentation)<-paste0(ref$chr,":",ref$start,"_",ref$end)
copy_segmentation<-as.data.frame(t(copy_segmentation))
saveRDS(copy_segmentation,file="copysegmentation.500kb.rds")
copy_segmentation<-readRDS(file="copysegmentation.500kb.rds")
copy_segmentation<-copy_segmentation[,!grepl("Y",colnames(copy_segmentation))] #remove Y
#filter to qc cells and set up annotations
Y_plot<-as.data.frame(t(Y))
Y_plot<-Y_plot[,!grepl("Y",colnames(Y_plot))]
Y_plot<-as.data.frame(Y_plot %>% mutate_all(., ~ ifelse(.!=0, log10(.+0.00000000001), log10(1))))
#add sample cell line names as metadata
cell_annot<-data.frame(basename=unlist(lapply(strsplit(row.names(Y_plot),"_"),"[",1)))
#set up treatment conditions
cell_annot$treatment<-substr(unlist(lapply(strsplit(row.names(Y_plot),"_"),"[",2)),1,1) #set up T47D cell treatment first
cell_annot[startsWith(cell_annot$basename,"M7"),]$treatment<-substr(cell_annot[startsWith(cell_annot$basename,"M7"),]$basename,3,3)
cell_annot[startsWith(cell_annot$basename,"BSM7"),]$treatment<-substr(cell_annot[startsWith(cell_annot$basename,"BSM7"),]$basename,5,5)
cell_annot$cellLine_treatment<-paste(cell_annot$basename,cell_annot$treatment,sep="_")
#clean up metadata a bit more
cell_annot$cellLine<-"T47D"
cell_annot[cell_annot$basename %in% c("BSM7E6","M7C1A","M7C2B","M7E4C","mcf7bulk"),]$cellLine<-"MCF7"
cell_annot[cell_annot$treatment %in% c("C"),]$treatment<-"control"
cell_annot[cell_annot$treatment %in% c("E"),]$treatment<-"estrogen"
cell_annot$bulk<-"single-cell"
cell_annot[cell_annot$basename=="mcf7bulk",]$bulk<-"MCF7"
cell_annot[cell_annot$basename=="t47dbulk",]$bulk<-"T47D"
col_fun_cn=structure(c("#2166ac", "#67a9cf", "#f7f7f7","#fddbc7","#ef8a62","#b2182b","#630410"), names = c("1", "2", "3", "4", "5", "6","7"))
ha = HeatmapAnnotation(which="row",cellline=cell_annot$cellLine,treatment=cell_annot$treatment,assay=cell_annot$cellLine_treatment,readcount=log10(colSums(Y)),
col = list(assay = c("BSM7E6_E"="red","M7C1A_C"="blue","M7C2B_C"="purple","M7E4C_E"="brown","T_C"="green","T_E"="gray","mcf7bulk_i"="yellow","t47dbulk_i"="orange"),
cellline=c("T47D"="red","MCF7"="blue"),
treatment=c("control"="white","estrogen"="black","i"="green")))
cellcount=data.frame(sampname=row.names(Y_plot),cellno=rep(1,nrow(Y_plot)))
cellcount[grepl("input",cellcount$sampname),]$cellno<-"bulk"
col_fun_reads=colorRamp2(quantile(unlist(Y_plot),c(0.1,0.2,0.3,0.5,0.6,0.8,0.9),na.rm=T),
c("#336699","#99CCCC","#CCCCCC","#CCCC66","#CC9966","#993333","#990000"))
#optimize segmentation
#https://github.com/shahcompbio/single_cell_pipeline/blob/master/single_cell/workflows/hmmcopy/scripts/hmmcopy.R
#https://advances.sciencemag.org/content/6/50/eabd6454
#Set up clustering of cells
dist_method="euclidean"
dist_x<-philentropy::distance(copy_segmentation,method=dist_method,as.dist.obj=T,use.row.names=T)
dend <- dist_x %>% hclust(method="ward.D2") %>% as.dendrogram(edge.root=F,h=2)
k_search<-find_k(dend,krange=4:10) #search for optimal K from 5-10
k_clus_number<-k_search$nc
k_clus_id<-k_search$pamobject$clustering
dend <- color_branches(dend, k = k_clus_number) #split breakpoint object by clusters
#Read count raw
plt1<-Heatmap(Y_plot,
show_row_names=F,
row_split=cell_annot$bulk,
show_column_names=F,
column_order=1:ncol(Y_plot),
col=col_fun_reads,
#cluster_rows=dend,
row_title="Raw read count",
name="Log10 Reads",#,
left_annotation=ha,
column_split=factor(unlist(lapply(strsplit(colnames(Y_plot),":"),"[",1)),levels=unique(unlist(lapply(strsplit(colnames(Y_plot),":"),"[",1))))
)
#HMM segmentation
plt2<-Heatmap(copy_segmentation,
show_row_names=F,
show_column_names=F,
row_split=cell_annot$bulk,
column_order=1:ncol(copy_segmentation),
col=col_fun_cn,
#cluster_rows=dend,
row_title="Segmentation",
name="copy state",
left_annotation=ha,
column_split=factor(unlist(lapply(strsplit(colnames(copy_segmentation),":"),"[",1)),levels=unique(unlist(lapply(strsplit(colnames(copy_segmentation),":"),"[",1))))
)
pdf("HMMcopy_test.pdf",width=10,height=3)
par(mfrow=c(2,1))
plt1
plt2
dev.off()
system("slack -F HMMcopy_test.pdf ryan_todo")
#custom mapd function
mapd<-function(cell){
d<-unlist(lapply(1:nrow(Y)-1, function(x) (Y[x,cell]-Y[x+1,cell])/mean(Y[,cell])))
mad<-median(abs(d-median(d)))
return(mad)
}
mapd_list<-unlist(mclapply(colnames(Y),mapd,mc.cores=20)) #25 cores
dist_df<-data.frame("cellID"=colnames(Y),"mapd"=mapd_list) #making a MAPD matrix
dist_df$read_count<-colSums(Y)
dist_df$sample<-unlist(lapply(strsplit(dist_df$cellID,"_"),"[",1))
library(dplyr)
dist_df %>% group_by(sample) %>% summarize(mean_MAD=mean(mapd),median_MAD=median(mapd),sd_MAD=sd(mapd),mean_readcount=mean(read_count),median_readcount=median(read_count))
## A tibble: 7 x 6
# sample mean_MAD median_MAD sd_MAD mead_readcount median_readcount
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 BSM7E6 0.196 0.190 0.0293 3187439. 2226462
#2 M7C1A 0.288 0.290 0.0301 1128324. 1069844
#3 M7C2B 0.333 0.344 0.0411 718630. 592200
#4 M7E4C 0.301 0.299 0.0284 304512. 327448
#5 mcf7bulk 0.0905 0.0921 0.0140 22368933. 20262739
#6 T 0.272 0.262 0.0473 752268. 570749
#7 t47dbulk 0.0901 0.0917 0.00733 30191789. 32174336
plt1<-ggplot(dist_df,aes(x=paste(sample),y=mapd,color=paste(sample)))+geom_jitter()+geom_boxplot(aes(fill=NULL))+theme_bw()+ylim(c(0,1))
plt2<-ggplot(dist_df,aes(x=paste(sample),y=log10(read_count),color=paste(sample)))+geom_jitter()+geom_boxplot(aes(fill=NULL))+theme_bw()+ylim(c(0,9))
ggsave(plt1/plt2,file="mapd_scores.pdf")
system("slack -F mapd_scores.pdf ryan_todo")
#didnt run below yet
### Merge single-cell data by clades for read depth visualization
#Restructure bins to finer resolution
bambedObj<-readRDS(file="bambedObj.500kbp.rds")
ref <- as.data.frame(bambedObj$ref)
bamdir <- bambedObj$bamdir
sampname <- bambedObj$sampname
ref$gc<-ref$gc/100 #fitting to HMMcopy analysis
ref$chr<-ref$seqname
#ref$chr<-substr(ref$seqname,4,6)
ref<-ref[c("chr","start","end","gc","mapp")]
colnames(ref)<-c("chr","start","end","gc","map")
ref_granges<-makeGRangesFromDataFrame(ref,keep.extra.columns=T) #used in the next few functions for overlapping consistent windows
Y<-readRDS(file="rawcount.500kbp.rds")
#Merge data by row means
#arbitrarily set bulk data as separate clades
k_clus_id[which(grepl("mcf7bulk",names(k_clus_id)))]<-"mcf7bulk"
k_clus_id[which(grepl("t47dbulk",names(k_clus_id)))]<-"t47dbulk"
clade_dat<-list()
for (i in unique(k_clus_id)){
clade<-names(k_clus_id[k_clus_id==i])
clade_combined<-rowSums(Y[,colnames(Y) %in% clade],na.rm=T)
clade_dat[[paste0("clade_",i)]]<-clade_combined
}
Ybulk<-do.call("cbind",clade_dat)
colnames(Ybulk)<-names(clade_dat)
#standard read correction
hmm_generator_bulk<-function(i){
cellname<-colnames(Ybulk)[i]
dat<-cbind(ref,Ybulk[,i])
colnames(dat)[ncol(dat)]<-"reads"
dat_copy <- suppressWarnings(correctReadcount(dat))
write.table(dat_copy,
file=paste0("bulkcounts_",cellname,".tsv"),
sep="\t",quote=F,row.names=T,col.names=T)
return(dat_copy)
}
#Normalize bins
copy_estimate<-lapply(1:ncol(Ybulk),hmm_generator_bulk) #correct bins by gc content,
names(copy_estimate)<-colnames(Ybulk)
saveRDS(copy_estimate,file="copyestimate.bulk.500kb.rds")
#segmentation for plotting
copy_segmentation<-lapply(1:length(copy_estimate),copy_seg_func) #segment genome by copy estimate (log2 of cor.map)
copy_segmentation<-lapply(copy_segmentation,as.numeric)
names(copy_segmentation)<-colnames(Ybulk)
copy_segmentation<-as.data.frame(do.call("cbind",copy_segmentation))
row.names(copy_segmentation)<-paste0(ref$chr,":",ref$start,"_",ref$end)
copy_segmentation<-as.data.frame(t(copy_segmentation))
saveRDS(copy_segmentation,file="copysegmentation.bulk.500kb.rds")
copy_segmentation<-readRDS(file="copysegmentation.bulk.500kb.rds")
copy_estimate<-readRDS(file="copyestimate.bulk.500kb.rds")
#prepare data frames for plotting
#remove chrY and set up data frames for plotting
copy_segmentation<-copy_segmentation[,!grepl("Y",colnames(copy_segmentation))]
copy_segmentation<-as.data.frame(t(copy_segmentation))
copy_estimate_plot<-as.data.frame(do.call("cbind",lapply(1:length(copy_estimate),function(x) copy_estimate[[x]]$cor.map)))
colnames(copy_estimate_plot)<-colnames(Ybulk)
row.names(copy_estimate_plot)<-row.names(Ybulk)
copy_estimate_plot<-copy_estimate_plot[row.names(copy_estimate_plot)%in%row.names(copy_segmentation),]
#convert copy estimates to integer copy number state via https://static-content.springer.com/esm/art%3A10.1038%2Fnmeth.4140/MediaObjects/41592_2017_BFnmeth4140_MOESM175_ESM.pdf
copy_estimate_plot<-lapply(1:ncol(copy_estimate_plot), function(x) {
int_val<-median(as.numeric(copy_estimate_plot[which(copy_segmentation[,x]==2),x]),na.rm=T)/2
return(copy_estimate_plot[,x]/int_val)
})
copy_estimate_plot<-as.data.frame(do.call("cbind",copy_estimate_plot))
colnames(copy_estimate_plot)<-colnames(copy_segmentation)
row.names(copy_estimate_plot)<-row.names(copy_segmentation)
est_plt<-melt(as.matrix(copy_estimate_plot))
seg_plt<-melt(as.matrix(copy_segmentation))
colnames(seg_plt)<-c("gloc","clade","state")
plt_melt<-cbind(seg_plt,copy_est=est_plt$value)
cols<-c("1"="#2166ac", "2"="#d0e7f5", "3"="#f5f5f5","4"="#fddbc7","5"="#ef8a62","6"="#b2182b")
#plot bins for a cell across a chromosome
range_gc<-quantile(plt_melt$copy_est, na.rm = TRUE, prob = c(0.05,0.95))
plt_melt$contig<-unlist(lapply(strsplit(as.character(plt_melt$gloc),":"),"[",1))
plt_melt$contig<-factor(plt_melt$contig,level=unique(plt_melt$contig))
plt_melt$start<-as.numeric(unlist(lapply(strsplit(unlist(lapply(strsplit(as.character(plt_melt$gloc),"_"),"[",1)),":"),"[",2)))
plt_melt$end<-as.numeric(unlist(lapply(strsplit(as.character(plt_melt$gloc),"_"),"[",2)))
plt_melt$row_order<-1:(nrow(plt_melt)/length(unique(plt_melt$clade)))
plt<-ggplot(plt_melt,aes(x=row_order,y=copy_est))+
geom_rect(aes(fill=as.character(state),xmin=row_order,xmax=row_order+1,ymin=0,ymax=6,alpha=0.01))+
scale_fill_manual(values=cols)+
geom_point(color="black",size=1,alpha=0.2)+
ylab("")+
xlab("")+
facet_grid(plt_melt$clade~plt_melt$contig,space="free",scales="free_x")+
theme_minimal()+
scale_y_continuous(breaks=c(0,1,2,3,4,5,6),limits=c(0,6))+
theme(axis.text.y = element_text(size=30),
axis.text.x = element_blank(),
panel.grid.minor = element_blank(),
#panel.grid.major = element_blank(),
panel.spacing.x=unit(0.1,"lines"),
strip.background = element_blank(),
strip.text = element_blank(),
legend.position="none",
panel.border = element_rect(colour = "black", fill = NA,size=3))
ggsave(plt,file="HMMcopy.merged.500kb.png",width=2000,height=1000,units="mm",limitsize=F)
system("slack HMMcopy.merged.500kb.png")
Perform methylation extraction with bismark methylation extractor. Output cov.gz files.
Here I’m using 10 nodes, 20 cpus per node (since parallelization is 3x5), with 20gb per node. It’s a lot of resources, but hopefully it will finish fast.
meth_extract.slurm.sh
#!/bin/bash
#SBATCH --nodes=1
#SBATCH --array=1-572
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=18
#SBATCH --mem-per-cpu=1gb
#SBATCH --time=12:00:00
#SBATCH --
files_in=`ls /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/dedup_bams/*deduplicated.bam | awk -v line=$SLURM_ARRAY_TASK_ID '{if (NR == line) print $0}'`
srun bismark_methylation_extractor \
-s --gzip --parallel 5 \
-o /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/bismark_cov_out \
--genome_folder /home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/fasta \
--CX \
--bedGraph \
--buffer_size 1G \
--no_header \
$files_in
sbatch meth_extract.slurm.sh
Generate cytosine NOME data for region summarization.
#!/bin/bash
#SBATCH --nodes=1
#SBATCH --array=1-572
#SBATCH --tasks-per-node=10
#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=5gb
#SBATCH --time=24:00:00
#SBATCH --
files_in=`ls /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/bismark_cov_out/*_merged_trimmed_bismark_bt2.deduplicated.bismark.cov.gz | awk -v line=$SLURM_ARRAY_TASK_ID '{if (NR == line) print $0}'`
out_name=`echo $files_in | awk '{n=split($1,a,"/");print a[n]}' | sed s/".cov.gz"//`
srun coverage2cytosine \
--gzip \
--dir /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/bismark_cov_out \
--genome_folder /home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/fasta \
--output $out_name \
--nome-seq \
$files_in
sbatch nome_extract.slurm.sh
Note: argv2 should be a bed file of format [chr]\t[start]\t[end]\t[feature_name]
#!/usr/bin/python
import pybedtools
import sys
import pandas as pd
import gzip
import os.path
pybedtools.helpers.set_tempdir("/home/groups/CEDAR/mulqueen/temp")
if len(sys.argv) != 5:
print("""
* argv1 is a cov.gz output from coverage2cytosine report (either CG or GpC)
* argv2 is a bed file with features to aggregate methylation over
* argv3 is output directory
* argv4 is a prefix used for the bed file annotation. Example: "genebody" or "promoter"
Note: argv2 should be a bed file of format [chr]\t[start]\t[end]\t[feature_name]""")
sys.exit(0)
in_list=[]
in_list.append(sys.argv[1])
#in_list.append("/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/bismark_cov_out/T_E8_G02_merged.deduplicated.bismark.NOMe.CpG.cov.gz")
in_list.append(sys.argv[2])
#in_list.append("/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/genes/genes.bed")
in_list.append(sys.argv[3])
#in_list.append("/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/methylation_regions")
in_list.append(sys.argv[4])
#in_list.append("genes")
outname=os.path.basename(in_list[0])[:len(os.path.basename(in_list[0]))-7]
scmet=pd.read_csv(gzip.open(in_list[0], "rb"),header=None,sep="\t")[[0,1,2,4,5]]
scmet.columns = ["chr", "start", "end", "met","unmet"]
ref = pybedtools.BedTool(in_list[1])
scmet = pybedtools.BedTool.from_dataframe(scmet)
scmet_intersect=scmet.intersect(ref,wa=True,wb=True,nonamecheck=True).to_dataframe(disable_auto_names=True, header=None)[[5,6,7,8,3,4]]
scmet_intersect.columns = ["chr", "start", "end", "feat","met","unmet"]
scmet_intersect["total_sites"]=scmet_intersect["met"]+scmet_intersect["unmet"]
out_dataframe=scmet_intersect.groupby(by=["chr", "start", "end", "feat"]).agg(met_cg=pd.NamedAgg(column="met",aggfunc="sum"),total_cg=pd.NamedAgg(column="total_sites",aggfunc="sum")).reset_index()
if in_list[2].endswith("/"):
out_dataframe.to_csv(in_list[2]+outname+"."+in_list[3]+".count.txt.gz",header=False,index=False,compression='gzip')
else:
out_dataframe.to_csv(in_list[2]+"/"+outname+"."+in_list[3]+".count.txt.gz",header=False,index=False,compression='gzip')
Example running:
python /home/groups/CEDAR/mulqueen/src/aggregate_methylation_over_region.py [argv1] [argv2] [arg3] [argv4]
#!/bin/bash
#SBATCH --nodes=1 #request 1 node
#SBATCH --tasks-per-node=10 ##we want our node to do N tasks at the same time
#SBATCH --array=1-572
#SBATCH --cpus-per-task=3 ##ask for CPUs per task (5 * 8 = 40 total requested CPUs)
#SBATCH --mem-per-cpu=2gb ## request gigabyte per cpu
#SBATCH --time=1:00:00 ## ask for 1 hour on the node
#SBATCH --
files_in=`ls /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/bismark_cov_out/*CpG.cov.gz | awk -v line=$SLURM_ARRAY_TASK_ID '{if (NR == line) print $0}'`
srun python /home/groups/CEDAR/mulqueen/src/aggregate_methylation_over_region.py \
$files_in \
/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/genes/genes.bed \
/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/methylated_regions \
gene
#!/bin/bash
#SBATCH --nodes=1 #request 1 node
#SBATCH --tasks-per-node=10 ##we want our node to do N tasks at the same time
#SBATCH --array=1-572
#SBATCH --cpus-per-task=3 ##ask for CPUs per task (5 * 8 = 40 total requested CPUs)
#SBATCH --mem-per-cpu=2gb ## request gigabyte per cpu
#SBATCH --time=1:00:00 ## ask for 1 hour on the node
#SBATCH --
files_in=`ls /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/bismark_cov_out/*CpG.cov.gz | awk -v line=$SLURM_ARRAY_TASK_ID '{if (NR == line) print $0}'`
srun python /home/groups/CEDAR/mulqueen/src/aggregate_methylation_over_region.py \
$files_in \
/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/regulatory_beds/promoters.bed \
/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/methylated_regions \
promoter
#!/bin/bash
#SBATCH --nodes=1 #request 1 node
#SBATCH --tasks-per-node=10 ##we want our node to do N tasks at the same time
#SBATCH --array=1-572
#SBATCH --cpus-per-task=3 ##ask for CPUs per task (5 * 8 = 40 total requested CPUs)
#SBATCH --mem-per-cpu=2gb ## request gigabyte per cpu
#SBATCH --time=1:00:00 ## ask for 1 hour on the node
#SBATCH --
files_in=`ls /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/bismark_cov_out/*CpG.cov.gz | awk -v line=$SLURM_ARRAY_TASK_ID '{if (NR == line) print $0}'`
srun python /home/groups/CEDAR/mulqueen/src/aggregate_methylation_over_region.py \
$files_in \
/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/regulatory_beds/enhancers.bed \
/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/methylated_regions \
enhancer
#!/bin/bash
#SBATCH --nodes=1 #request 1 node
#SBATCH --tasks-per-node=10 ##we want our node to do N tasks at the same time
#SBATCH --array=1-572
#SBATCH --cpus-per-task=3 ##ask for CPUs per task (5 * 8 = 40 total requested CPUs)
#SBATCH --mem-per-cpu=2gb ## request gigabyte per cpu
#SBATCH --time=1:00:00 ## ask for 1 hour on the node
#SBATCH --
files_in=`ls /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/bismark_cov_out/*CpG.cov.gz | awk -v line=$SLURM_ARRAY_TASK_ID '{if (NR == line) print $0}'`
srun python /home/groups/CEDAR/mulqueen/src/aggregate_methylation_over_region.py \
$files_in \
/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/regulatory_beds/100kb.bed \
/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/methylated_regions \
100kb
#!/bin/bash
#SBATCH --nodes=1 #request 1 node
#SBATCH --tasks-per-node=10 ##we want our node to do N tasks at the same time
#SBATCH --array=1-572
#SBATCH --cpus-per-task=3 ##ask for CPUs per task (5 * 8 = 40 total requested CPUs)
#SBATCH --mem-per-cpu=2gb ## request gigabyte per cpu
#SBATCH --time=1:00:00 ## ask for 1 hour on the node
#SBATCH --
files_in=`ls /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/bismark_cov_out/*CpG.cov.gz | awk -v line=$SLURM_ARRAY_TASK_ID '{if (NR == line) print $0}'`
srun python /home/groups/CEDAR/mulqueen/src/aggregate_methylation_over_region.py \
$files_in \
/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/regulatory_beds/breastcancer_enhancers_SI_RI.bed \
/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/methylated_regions \
bcEnhance
#!/bin/bash
#SBATCH --nodes=1 #request 1 node
#SBATCH --tasks-per-node=10 ##we want our node to do N tasks at the same time
#SBATCH --array=1-572
#SBATCH --cpus-per-task=3 ##ask for CPUs per task (5 * 8 = 40 total requested CPUs)
#SBATCH --mem-per-cpu=2gb ## request gigabyte per cpu
#SBATCH --time=1:00:00 ## ask for 1 hour on the node
#SBATCH --
files_in=`ls /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/bismark_cov_out/*GpC.cov.gz | awk -v line=$SLURM_ARRAY_TASK_ID '{if (NR == line) print $0}'`
srun python /home/groups/CEDAR/mulqueen/src/aggregate_methylation_over_region.py \
$files_in \
/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/genes/genes.bed \
/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/methylated_regions \
gene
#!/bin/bash
#SBATCH --nodes=1 #request 1 node
#SBATCH --tasks-per-node=10 ##we want our node to do N tasks at the same time
#SBATCH --array=1-572
#SBATCH --cpus-per-task=3 ##ask for CPUs per task (5 * 8 = 40 total requested CPUs)
#SBATCH --mem-per-cpu=2gb ## request gigabyte per cpu
#SBATCH --time=1:00:00 ## ask for 1 hour on the node
#SBATCH --
files_in=`ls /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/bismark_cov_out/*GpC.cov.gz | awk -v line=$SLURM_ARRAY_TASK_ID '{if (NR == line) print $0}'`
srun python /home/groups/CEDAR/mulqueen/src/aggregate_methylation_over_region.py \
$files_in \
/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/regulatory_beds/promoters.bed \
/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/methylated_regions \
promoter
#!/bin/bash
#SBATCH --nodes=1 #request 1 node
#SBATCH --tasks-per-node=10 ##we want our node to do N tasks at the same time
#SBATCH --array=1-572
#SBATCH --cpus-per-task=3 ##ask for CPUs per task (5 * 8 = 40 total requested CPUs)
#SBATCH --mem-per-cpu=2gb ## request gigabyte per cpu
#SBATCH --time=1:00:00 ## ask for 1 hour on the node
#SBATCH --
files_in=`ls /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/bismark_cov_out/*GpC.cov.gz | awk -v line=$SLURM_ARRAY_TASK_ID '{if (NR == line) print $0}'`
srun python /home/groups/CEDAR/mulqueen/src/aggregate_methylation_over_region.py \
$files_in \
/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/regulatory_beds/enhancers.bed \
/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/methylated_regions \
enhancer
#!/bin/bash
#SBATCH --nodes=1 #request 1 node
#SBATCH --tasks-per-node=10 ##we want our node to do N tasks at the same time
#SBATCH --array=1-572
#SBATCH --cpus-per-task=3 ##ask for CPUs per task (5 * 8 = 40 total requested CPUs)
#SBATCH --mem-per-cpu=2gb ## request gigabyte per cpu
#SBATCH --time=1:00:00 ## ask for 1 hour on the node
#SBATCH --
files_in=`ls /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/bismark_cov_out/*GpC.cov.gz | awk -v line=$SLURM_ARRAY_TASK_ID '{if (NR == line) print $0}'`
srun python /home/groups/CEDAR/mulqueen/src/aggregate_methylation_over_region.py \
$files_in \
/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/regulatory_beds/100kb.bed \
/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/methylated_regions \
100kb
#!/bin/bash
#SBATCH --nodes=1 #request 1 node
#SBATCH --tasks-per-node=10 ##we want our node to do N tasks at the same time
#SBATCH --array=1-572
#SBATCH --cpus-per-task=3 ##ask for CPUs per task (5 * 8 = 40 total requested CPUs)
#SBATCH --mem-per-cpu=2gb ## request gigabyte per cpu
#SBATCH --time=1:00:00 ## ask for 1 hour on the node
#SBATCH --
files_in=`ls /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/bismark_cov_out/*GpC.cov.gz | awk -v line=$SLURM_ARRAY_TASK_ID '{if (NR == line) print $0}'`
srun python /home/groups/CEDAR/mulqueen/src/aggregate_methylation_over_region.py \
$files_in \
/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/regulatory_beds/breastcancer_enhancers_SI_RI.bed \
/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/methylated_regions \
bcEnhance
sbatch summet_CpG_100kb.slurm.sh
sbatch summet_CpG_promoter.slurm.sh
sbatch summet_GpC_gene.slurm.sh
sbatch summet_CpG_bcEnhance.slurm.sh
sbatch summet_GpC_100kb.slurm.sh
sbatch summet_GpC_promoter.slurm.sh
sbatch summet_CpG_enhancer.slurm.sh
sbatch summet_GpC_bcEnhance.slurm.sh
sbatch summet_CpG_gene.slurm.sh
sbatch summet_GpC_enhancer.slurm.sh
Making an R script for cistopic processing of methylation files.
library(cisTopic)
library(reshape2)
library(GenomicRanges)
library(Matrix)
library(mefa4)
library(stats)
library(dplyr)
library(ComplexHeatmap)
library(circlize)
library(RColorBrewer)
library(patchwork)
library(rstatix)
library(GenomeInfoDb)
library(ggplot2)
set.seed(1234)
library(EnsDb.Hsapiens.v86)
library(org.Hs.eg.db)
library(TxDb.Hsapiens.UCSC.hg38.knownGene)
library(data.table)
library(BSgenome.Hsapiens.UCSC.hg38)
library(Ckmeans.1d.dp)
# read in arguments
args <- commandArgs(trailingOnly=TRUE)
setwd(args[4])
#test set of arguments
#args<-list()
#args[1]<-"/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/genes/genes.bed"
#args[2]<-"GpC"
#args[3]<-"gene"
#args<-unlist(args)
meth_files<-list.files(pattern=paste0(args[2],".",args[3],".count.txt.gz$")) #use prefix to determine meth files to read in
region<-args[1] #region file to read through
#create cistopic object from methylation files from https://github.com/aertslab/cisTopic/blob/04cecbb9d1112fcc1a6edc28b5a506bcb49f2803/R/InitializecisTopic.R
#i modified to fit file structure
createcisTopicObjectFromMeth <- function(
methfiles,
regions,
project.name = "cisTopicProject",
min.cells = 0,
min.regions = 0,
is.acc = 0.5,
return.norm.beta=T,
...
) {
# Prepare annotation
#tester
#regions<-region
#methfiles<-meth_files
#return.norm.beta=T
regions_frame <- read.table(regions)[,c(1:4)]
colnames(regions_frame) <- c('seqnames', 'start', 'end','feat')
regions_frame<-regions_frame[!duplicated(regions_frame[,c(1:3)]),] #ensure assayed regions are unique
regions_frame<-regions_frame[regions_frame$seqnames %in% paste0('chr',c(1:22,"X","Y")),] #remove alt chrs
rownames(regions_frame) <- paste(regions_frame$seqnames, ':', regions_frame$start, '-', regions_frame$end, sep='')
regions_granges <- makeGRangesFromDataFrame(as.data.frame(regions_frame))
# Prepxare beta matrix, cell data and region data
beta.matrix <- Matrix(0, nrow(regions_frame), length(methfiles), sparse=TRUE)
rownames(beta.matrix) <- rownames(regions_frame)
colnames(beta.matrix) <- methfiles
coverage.matrix<-beta.matrix #prepare a coverage matrix of the same dims as beta matrix
cell.data <- matrix(0, length(methfiles), 2)
rownames(cell.data) <- methfiles
colnames(cell.data) <- c('Methylated reads', 'Total reads')
region.data <- matrix(0, nrow(regions_frame), 2)
rownames(region.data) <- rownames(regions_frame)
colnames(region.data) <- c('Methylated reads', 'Total reads')
#read in single-cell data and format for scmet
single_cell_in<-mclapply(methfiles,mc.cores=20, FUN= function(x) {
#tester
#x<-methfiles[1]
# Read data
print(paste('Reading file ', x, '...', sep=''))
sample <- fread(x,sep=",")
sample <- sample[, c(1,2,3,5,6)]
colnames(sample) <- c('seqnames', 'start', 'end', 'Methylated', 'Total_reads')
sample_granges <- makeGRangesFromDataFrame(as.data.frame(sample), keep.extra.columns=TRUE)
# Calculate aggregate reads per region (methylated and total)
overlaps <- findOverlaps(sample_granges, regions_granges)
sites <- sample_granges[queryHits(overlaps)]
sumMethylated <- aggregate(sites$Methylated, list(subjectHits(overlaps)), sum)
sumReads <- aggregate(sites$Total_reads, list(subjectHits(overlaps)), sum)
# Fill region data
rownames(sumMethylated) <- rownames(regions_frame)[sumMethylated[,1]]
region.data[rownames(sumMethylated),1] <- region.data[rownames(sumMethylated),1] + sumMethylated[,2]
rownames(sumReads) <- rownames(regions_frame)[sumReads[,1]]
region.data[rownames(sumReads),2] <- region.data[rownames(sumReads),2] + sumReads[,2]
total_met<-sum(region.data[,1])
total_count<-sum(region.data[,2])
# Calculate beta (mean methylation) old way of processing
aggrBeta <- sumMethylated[,2]/sumReads[,2]
#calculate beta-binomial distribution to account for coverage
if(return.norm.beta){
#beta binomial distribution correction based on https://www.biorxiv.org/content/10.1101/2019.12.11.873398v1.full
#sample mean methylation across features
m=mean(sumMethylated[,2]/sumReads[,2])
v=var(sumMethylated[,2]/sumReads[,2])
#shape parameters of beta distribution by method of moments
alpha=m*(m*(1-m)/v-1)
beta=(1-m)*(m*(1-m)/v-1)
#calculate posterior
mhat_c=(alpha+sumMethylated[,2])/(alpha+beta+sumReads[,2])
norm_mhat_c=mhat_c/(alpha/alpha+beta)
aggrBeta<-norm_mhat_c
}
coverage_count<-region.data[,2]
names(aggrBeta) <- rownames(regions_frame)[sumMethylated[,1]]
return(list(total_met=total_met,total_count=total_count,beta=aggrBeta,coverage_count=region.data[,2]))
})
#posterior rate calculation and normalization
cell_met_count<-unlist(lapply(single_cell_in,"[[",1))
cell_total_count<-unlist(lapply(single_cell_in,"[[",2))
cell.data<-cbind(cell.data,CG_met_count=cell_met_count,CG_total_count=cell_total_count)
beta.matrix_sc<-lapply(1:length(single_cell_in), FUN= function(x) single_cell_in[[x]][3])
print("Plotting coverage plot per feature.")
coverage.matrix_sc<-lapply(1:length(single_cell_in), FUN= function(x) single_cell_in[[x]][4])
plt<-ggplot()+geom_histogram(aes(x=unlist(coverage.matrix_sc)),binwidth=1)+theme_bw()+xlim(c(0,100))
ggsave(plt,file=paste0(args[2],".",args[3],".feature_coverage.pdf"))
system(paste0("slack -F ",args[2],".",args[3],".feature_coverage.pdf"," ryan_todo"))
#populate the sparse matrix with a for loop. probably not the best, but whatever
print("Populating Sparse Beta Matrix.")
for (i in 1:length(beta.matrix_sc)){
beta_dat<-unlist(beta.matrix_sc[[i]]$beta,use.names=T)
beta.matrix[names(beta_dat),methfiles[i]]<-unname(beta_dat)
}
print("Populating Sparse Coverage Matrix.")
for (i in 1:length(coverage.matrix_sc)){
cov_dat<-unlist(coverage.matrix_sc[[i]]$coverage_count,use.names=T)
coverage.matrix[names(cov_dat),methfiles[i]]<-unname(cov_dat)
}
#compute CG density across regions
#https://www.biostars.org/p/478444/
#Get the sequences and compute the GC content
print("Calculating region specific CG density.")
region_seq<-getSeq(BSgenome.Hsapiens.UCSC.hg38, regions_granges)
if(args[3]=="GpC"){
freqs <- letterFrequency(region_seq,letters="GC")
} else {
freqs <- letterFrequency(region_seq,letters="CG")}
nuc_density <- freqs/region_seq@ranges@width
region.data<-cbind(region.data,regions_frame[4],nuc_density=nuc_density,cg_count=freqs)#add in gene name and cg density
object <- createcisTopicObject(count.matrix = beta.matrix, project.name = project.name, min.cells = min.cells, min.regions = min.regions, is.acc = is.acc, ...)
object <- addCellMetadata(object, cell.data = as.data.frame(cell.data))
object <- addRegionMetadata(object, region.data = as.data.frame(region.data))
return(c(object,coverage.matrix))
}
dat_out<-createcisTopicObjectFromMeth(methfiles=meth_files,regions=region) #run the read in function
dat<-dat_out[[1]]
dat_cov<-dat_out[[2]]
print("Generating an automatic methylation cutoff by univariate k means.")
#generate plot of beta values per features
feat_dat<-Melt(dat@count.matrix)
count_dat<-Melt(as.matrix(dat_cov))
feat_var<-data.frame(var=apply(dat@count.matrix,1,sd),nuc_density=as.numeric(dat@region.data[,10]),region_cg_count=as.numeric(dat@region.data[,11]))
feat_dat2<-merge(feat_dat,feat_var,by.x="rows",by.y="row.names",all.x=T)
feat_dat2<-merge(feat_dat2,count_dat,by=c("rows","cols"))
colnames(feat_dat2)<-c("rows","cols","value","var","nuc_density","region_cg_count","cov")
row.names(feat_dat2)<-row.names(feat_dat)
feat_dat<-feat_dat2
feat_dat$perc_gc_covered<-(feat_dat$cov/feat_dat$region_cg_count)*100
#perform univariate clustering to determine optimal sample segmentation https://cran.r-project.org/web/packages/Ckmeans.1d.dp/vignettes/Ckmeans.1d.dp.html
#similar to this paper https://academic.oup.com/bioinformatics/article/36/20/5027/5866975?login=true
#provide cg density as weight?
clus<-Ckmeans.1d.dp(x=feat_dat$value,k=2,y=feat_dat$nuc_density)
cutoff_value<-max(feat_dat$value[clus$cluster==1])
print(paste0("Cutoff value set to: ",cutoff_value))
ylim_feat_cov<-quantile(probs=c(0,0.95),feat_dat$cov/feat_dat$region_cg_count)
plt1<-ggplot(feat_dat,aes(x=value,y=var))+geom_density_2d(aes(colour = after_stat(level)),binwidth = 3)+xlab("Methylation")+ylab("Feature SD")+scale_color_distiller(palette = 1,direction=-1)+geom_vline(xintercept=cutoff_value,color="red") +xlim(c(0,1))
plt2<-ggplot(feat_dat,aes(x=value,y=nuc_density))+geom_density_2d(aes(colour = after_stat(level)),binwidth = 3)+xlab("Methylation")+ylab("Feature Dinuc Density")+scale_color_distiller(palette = 2,direction=-1) + geom_vline(xintercept=cutoff_value,color="red") +xlim(c(0,1))
plt3<-ggplot(feat_dat,aes(x=value,y=perc_gc_covered))+geom_density_2d(aes(colour = after_stat(level)))+xlab("Methylation")+ylab("Feature Coverage Percent")+scale_color_distiller(palette = 3,direction=-1)+ylim(ylim_feat_cov)+geom_vline(xintercept=cutoff_value,color="red")+xlim(c(0,1))
ggsave(plt1/plt2/plt3,file=paste0(args[2],".",args[3],".feature_stats.pdf"))
system(paste0("slack -F ",args[2],".",args[3],".feature_stats.pdf"," ryan_todo"))
print("Binarize Data by automatic cutoff.")
backup<-dat@binary.count.matrix
count_mat<-as.matrix(dat@count.matrix)
# #Apply coverage filter, require at 5 or more CG measurements
dat_cov<-as.matrix(dat_cov)
dat_cov<-dat_cov[row.names(dat_cov) %in% row.names(count_mat),colnames(dat_cov) %in% colnames(count_mat)]
#removed coverage filter for now
#count_mat[which(dat_cov<5,arr.ind=T)]<-0
count_mat[which(count_mat>=cutoff_value,arr.ind=T)]<-1
count_mat[which(count_mat<cutoff_value,arr.ind=T)]<-0
#remove cells with no methylated regions (due to low coverage)
filt_keep<-which(colMeans(count_mat)>0)
dat@binary.count.matrix<-Matrix(count_mat[,filt_keep])
dat@cell.data<-dat@cell.data[filt_keep,]
dat@cell.names<-dat@cell.names[filt_keep]
dat <- runWarpLDAModels(dat, topic=c(5:15, 20, 25), seed=123, nCores=12, addModels=FALSE,tmp="/home/groups/CEDAR/mulqueen/temp/")
#select best model
pdf(paste0(args[2],".",args[3],".cistopic_model_selection.pdf"))
par(mfrow=c(3,3))
dat <- selectModel(dat, type='maximum')
dat <- selectModel(dat, type='perplexity')
dat <- selectModel(dat, type='derivative')
dev.off()
system(paste0("slack -F ",args[2],".",args[3],".cistopic_model_selection.pdf"," ryan_todo") )
#going with topics counts based on derivative
dat<-cisTopic::selectModel(dat,type="derivative",keepModels=T)
dat <- runUmap(dat, target='cell') #running umap using cistopics implementation
#add sample cell line names as metadata
dat@cell.data$cellLine<-unlist(lapply(strsplit(row.names(dat@cell.data),"_"),"[",1))
#set up treatment conditions
dat@cell.data$treatment<-substr(unlist(lapply(strsplit(row.names(dat@cell.data),"_"),"[",2)),1,1) #set up T47D cell treatment first
dat@cell.data[startsWith(dat@cell.data$cellLine,"M7"),]$treatment<-substr(dat@cell.data[startsWith(dat@cell.data$cellLine,"M7"),]$cellLine,3,3)
dat@cell.data[startsWith(dat@cell.data$cellLine,"BSM7"),]$treatment<-substr(dat@cell.data[startsWith(dat@cell.data$cellLine,"BSM7"),]$cellLine,5,5)
dat@cell.data$cellLine_treatment<-paste(dat@cell.data$cellLine,dat@cell.data$treatment,sep="_")
dat@cell.data$perc_met<-dat@cell.data$"CG_met_count"/dat@cell.data$"CG_total_count"
#clean up metadata a bit more
dat@cell.data[dat@cell.data$cellLine %in% c("BSM7E6","M7C1A","M7C2B","M7E4C"),]$cellLine<-"MCF7"
dat@cell.data[dat@cell.data$cellLine %in% c("T"),]$cellLine<-"T47D"
dat@cell.data[dat@cell.data$treatment %in% c("C"),]$treatment<-"control"
dat@cell.data[dat@cell.data$treatment %in% c("E"),]$treatment<-"estrogen"
write.table(dat@cell.data,file=paste0(args[2],".",args[3],".cellData.tsv"),col.names=T,row.names=T,sep="\t",quote=F)
pdf(paste0(args[2],".",args[3],".cistopic_clustering.pdf"))
par(mfrow=c(1,3))
plotFeatures(dat, method='Umap', target='cell', topic_contr=NULL, colorBy=c('cellLine','treatment','cellLine_treatment'), cex.legend = 0.8, factor.max=.75, dim=2, legend=TRUE, col.low='darkgreen', col.mid='yellow', col.high='brown1', intervals=20)
par(mfrow=c(1,3))
plotFeatures(dat, method='Umap', target='cell', topic_contr=NULL, colorBy=c("CG_total_count","perc_met"), cex.legend = 0.8, factor.max=.75, dim=2, legend=TRUE, col.low='darkgreen', col.mid='yellow', col.high='brown1', intervals=20)
par(mfrow=c(2,5))
plotFeatures(dat, method='Umap', target='cell', topic_contr='Probability', colorBy=NULL, cex.legend = 0.8, factor.max=.75, dim=2, legend=TRUE)
dev.off()
system(paste0("slack -F ",args[2],".",args[3],".cistopic_clustering.pdf"," ryan_todo"))
saveRDS(dat,file=paste0(args[2],".",args[3],".cistopic_object.Rds"))
#should probably make this Z-scored for plotting
topicmat<-as.data.frame(dat@selected.model$document_expects)
write.table(topicmat,file=paste0(args[2],".",args[3],".cellbytopic.cistopic.tsv"),col.names=T,row.names=T,sep="\t",quote=F)
topicmat<-as.data.frame(t(scale(t(topicmat))))
cellline_annot<-dat@cell.data$cellLine
treatment_annot<-dat@cell.data$treatment
c_count_annot<-dat@cell.data$CG_total_count
cellline_treatment_annot<-dat@cell.data$cellLine_treatment
#color function
col_fun=colorRamp2(quantile(unlist(topicmat),c(0.1,0.2,0.3,0.5,0.6,0.8,0.9),na.rm=T),
c("#336699","#99CCCC","#CCCCCC","#CCCC66","#CC9966","#993333","#990000"))
row.names(topicmat)<-paste0("Topic_",row.names(topicmat))
plt1<-Heatmap(topicmat,
name="Z-score",
show_column_names=F,
bottom_annotation=columnAnnotation(cellline=cellline_annot,treatment=treatment_annot,C_covered=c_count_annot,cellline_treatment=cellline_treatment_annot,
col = list(cellline = c("T47D"="red","MCF7"="blue"),
treatment = c("control" = "white", "estrogen" = "black"),
cellline_treatment = c("BSM7E6_E"="green","M7C1A_C"="brown","M7C2B_C"="purple","M7E4C_E"="blue","T_C"="orange","T_E"="red"))))
pdf(paste0(args[2],".",args[3],".cistopic_heatmap.pdf"))
plt1
dev.off()
system(paste0("slack -F ",args[2],".",args[3],".cistopic_heatmap.pdf", " ryan_todo") )
#testing topic significance for cell line/ treatment
dat_stat<-rbind(as.data.frame(dat@selected.model$document_expects),cellline_annot,treatment_annot)
dat_stat<-as.data.frame(t(dat_stat))
dat_stat[1:(ncol(dat_stat)-2)] <- lapply(dat_stat[1: (ncol(dat_stat)-2)], as.numeric)
dat_stat<-melt(dat_stat)
colnames(dat_stat)<-c("cellline","treatment","topic","value")
dat_stat$topic<-paste0("topic_",sub('.', '', dat_stat$topic))
#testing topic specificity by treatment and cell line
out_stats<-as.data.frame(dat_stat %>%
group_by(topic) %>%
anova_test(value ~ treatment*cellline) %>% adjust_pvalue()
)
write.table(out_stats,file=paste0(args[2],".",args[3],".cistopic_topic_enrichment.txt"),quote=F,sep="\t",col.names=T)
#region annotations
dat<-readRDS(file=paste0(args[2],".",args[3],".cistopic_object.Rds"))
pred_matrix <- predictiveDistribution(dat) #predictive measurements of topics
dat <- getRegionsScores(dat, method='NormTop', scale=TRUE) #get regions from topics
dat <- annotateRegions(dat, txdb=TxDb.Hsapiens.UCSC.hg38.knownGene, annoDb='org.Hs.eg.db') #plot general annotations to topics
dat<-binarizecisTopics(dat,thrP=0.975) #binarize cistopics to get genes driving topics
dat <- runUmap(dat, target='region') #running umap using cistopics implementation
pdf(paste0(args[2],".",args[3],".cistopic_clustering.pdf"))
par(mfrow=c(2,5))
plotFeatures(dat, method='Umap', target='region',topic_contr='Probability')
dev.off()
system(paste0("slack -F ",args[2],".",args[3],".cistopic_clustering.regions.pdf"," ryan_todo"))
#grab top 10 regions per topic
topic_enrich<-melt(as.matrix(dat@region.data[which(grepl(colnames(dat@region.data),pattern="Scores_Topic"))]))
region_plt<-dat@region.data[as.data.frame(topic_enrich %>% group_by(Var2) %>% slice_max(order_by = value, n = 10))[,1],]
row.names(region_plt)<-paste(row.names(region_plt),region_plt$SYMBOL)
region_plt<-region_plt[,which(grepl(pattern="Scores_Topic",colnames(region_plt)))]
col_order<-1:ncol(region_plt)
plt2<-Heatmap(region_plt,name="Topic Scores",column_order=col_order)
pdf(paste0(args[2],".",args[3],".TopicScoreRegions.pdf"),height=20)
plt2
dev.off()
system(paste0("slack -F ",args[2],".",args[3],".TopicScoreRegions.pdf"," ryan_todo"))
#getBedFiles(dat, path=paste0(args[2],".",args[3],"_cisTopic_beds")
dat <- GREAT(dat, genome='hg38', fold_enrichment=1.5, geneHits=1, sign=0.05, request_interval=10)
pdf(paste0(args[2],".",args[3],"cistopic_GO.pdf"),width=30,height=30)
ontologyDotPlot(dat, top=20, topics=c(1:ncol(dat@selected.model$document_expects)), var.y='name', order.by='Binom_Adjp_BH')
dev.off()
system(paste0("slack -F ",paste0(args[2],".",args[3],".GO.pdf"," ryan_todo"))
#Save cistopic object
saveRDS(dat,file=paste0(args[2],".",args[3],".cistopic_object.Rds"))
Rscript /home/groups/CEDAR/mulqueen/src/cistopic_methylation.R [argv1] [argv2] [argv3]
Generate sbatch scripts for running:
reg=("/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/genes/genes.bed" "/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/regulatory_beds/promoters.bed" "/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/regulatory_beds/enhancers.bed" "/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/regulatory_beds/100kb.bed" "/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/regulatory_beds/breastcancer_enhancers_SI_RI.bed" "/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/genes/genes.bed" "/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/regulatory_beds/promoters.bed" "/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/regulatory_beds/enhancers.bed" "/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/regulatory_beds/100kb.bed" "/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/regulatory_beds/breastcancer_enhancers_SI_RI.bed")
c_type=("CpG" "CpG" "CpG" "CpG" "CpG" "GpC" "GpC" "GpC" "GpC" "GpC")
name=( "gene" "promoter" "enhancer" "100kb" "bcEnhance" "gene" "promoter" "enhancer" "100kb" "bcEnhance")
wd="/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/redo_bams/methylated_regions"
for i in "${!reg[@]}"; do
printf '#!/bin/bash
#SBATCH --nodes=1 #request 1 node
#SBATCH --tasks-per-node=1 ##we want our node to do N tasks at the same time
#SBATCH --cpus-per-task=20 ##ask for CPUs per task (5 * 8 = 40 total requested CPUs)
#SBATCH --mem-per-cpu=5gb ## request gigabyte per cpu
#SBATCH --time=3:00:00 ## ask for 1 hour on the node
#SBATCH --
srun Rscript /home/groups/CEDAR/mulqueen/src/cistopic_methylation.R %s %s %s %s' "${reg[i]}" "${c_type[i]}" "${name[i]}" $wd > "cistopic.${c_type[i]}.${name[i]}.slurm.sh" ; done
sbatch cistopic.CpG.promoter.slurm.sh
sbatch cistopic.CpG.100kb.slurm.sh
sbatch cistopic.CpG.enhancer.slurm.sh
sbatch cistopic.CpG.bcEnhance.slurm.sh
sbatch cistopic.CpG.gene.slurm.sh
sbatch cistopic.GpC.bcEnhance.slurm.sh
sbatch cistopic.GpC.gene.slurm.sh
sbatch cistopic.GpC.100kb.slurm.sh
sbatch cistopic.GpC.enhancer.slurm.sh
sbatch cistopic.GpC.promoter.slurm.sh
mkdir /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/rna
multiqc -o /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/rna /home/groups/CEDAR/doe/projects/my_NMT/MCF7_T47D/scRNA_SMARTseq2/samples
I think his filtering is way to aggressive given the quality of the data. So I’m going to realign and generate my own counts matrix.
/home/groups/CEDAR/doe/projects/my_NMT/MCF7_T47D/scRNA_SMARTseq2/samples/raw
ln -s /home/groups/CEDAR/doe/projects/my_NMT/MCF7_T47D/scRNA_SMARTseq2/samples/raw /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/rna_raw
Using the genome reference and version of STAR packages with cellranger. Trimming first 15 bp and last 3 bp as per fastqc output. Trimming first 15 bases and last 3 bases, only aligning read 1 Perform counting (I think this accounts for duplicate reads, but I’m not entirely sure)
#!/bin/bash
#SBATCH --nodes=1 #request 1 node
#SBATCH --array=1-672
#SBATCH --tasks-per-node=30 ##we want our node to do N tasks at the same time
#SBATCH --cpus-per-task=1 ##ask for CPUs per task (5 * 8 = 40 total requested CPUs)
#SBATCH --mem-per-cpu=2gb ## request gigabyte per cpu
#SBATCH --time=1:00:00 ## ask for 1 hour on the node
#SBATCH --
array_in=`ls /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/rna_raw/*_R1.fq.gz | wc -l`
fq_in=`ls /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/rna_raw/*_R1.fq.gz | awk -v line=$SLURM_ARRAY_TASK_ID '{if (NR == line) print $0}'`
name="$(basename -- $fq_in)";
name=${name%.fq.gz}
echo $name;
/home/groups/CEDAR/mulqueen/src/cellranger/cellranger-6.0.1/lib/bin/STAR --runMode alignReads \
--genomeDir /home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/star \
--readFilesIn /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/rna_raw/${name}.fq.gz \
--outFileNamePrefix /home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/rna/rna_bam/${name}. \
--readFilesCommand zcat \
--clip3pNbases 3 \
--clip5pNbases 15 \
--outSAMtype BAM SortedByCoordinate \
--quantMode GeneCounts;
Read in ReadsPerGene.out.tab files and format into a data frame. Then make a seurat object for filtering and processing cells.
Following this: https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
library(Seurat)
library(AnnotationDbi)
library(org.Hs.eg.db)
library(EnsDb.Hsapiens.v86)
library(dplyr)
library(cisTopic)
library(biomaRt) #convert ENSG gene name to chromosome location
setwd("/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/rna/rna_bam")
ff <- list.files(pattern = "*ReadsPerGene.out.tab$", full.names = TRUE )
counts.files <- lapply( ff, read.table, skip = 4 ) #first 4 lines are mapping QC, might be good to add as a metadata table
counts_in <- as.data.frame( sapply( counts.files, function(x) x[ , 2 ] ) )
ff <- gsub( "_R1[.]ReadsPerGene[.]out[.]tab", "", ff )
ff <- gsub( "[.]/", "", ff )
colnames(counts_in) <- ff
row.names(counts_in) <- counts.files[[1]]$V1
#make seurat object
dat <- CreateSeuratObject(counts = counts_in, project = "cellline", min.cells = 3, min.features = 1000)
#add mito reads to feature data
mito.features= genes(EnsDb.Hsapiens.v86, filter = ~ seq_name == "MT")
#dat[["percent.mt"]] <- PercentageFeatureSet(dat, assay="RNA",features=mito.features$gene_id)
#qc plot
pdf("rna_qc.pdf")
VlnPlot(dat, features = c("nFeature_RNA", "nCount_RNA"), ncol = 3)
dev.off()
system("slack -F rna_qc.pdf ryan_todo")
dat <- NormalizeData(dat, normalization.method = "LogNormalize", scale.factor = 10000)
dat <- FindVariableFeatures(dat, selection.method = "vst", nfeatures = 2000)
# Identify the 10 most highly variable genes
top10 <- head(VariableFeatures(dat), 10)
# plot variable features with and without labels
plot1 <- VariableFeaturePlot(dat)
plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)
pdf("rna_topvar.pdf")
plot1 / plot2
dev.off()
system("slack -F rna_topvar.pdf ryan_todo")
#dim reduction
all.genes <- rownames(dat)
dat <- ScaleData(dat, features = all.genes)
dat <- RunPCA(dat, features = VariableFeatures(object = dat))
print(dat[["pca"]], dims = 1:5, nfeatures = 5)
pdf("rna_pcaloadings.pdf")
VizDimLoadings(dat, dims = 1:2, reduction = "pca")
dev.off()
system("slack -F rna_pcaloadings.pdf ryan_todo")
pdf("rna_pca.pdf")
DimPlot(dat, reduction = "pca")
dev.off()
system("slack -F rna_pca.pdf ryan_todo")
pdf("rna_pcaheatmap.pdf")
DimHeatmap(dat, dims = 1:15, cells = 500, balanced = TRUE)
dev.off()
system("slack -F rna_pcaheatmap.pdf ryan_todo")
#determine dimensionality
dat <- JackStraw(dat, num.replicate = 100)
dat <- ScoreJackStraw(dat, dims = 1:20)
pdf("rna_elbowplot.pdf")
JackStrawPlot(dat, dims = 1:15)
ElbowPlot(dat)
dev.off()
system("slack -F rna_elbowplot.pdf ryan_todo")
#Cluster and UMAP
dat <- FindNeighbors(dat, dims = 1:10)
dat <- FindClusters(dat, resolution = 0.5)
dat <- RunUMAP(dat, dims = 1:10)
#add more cell line info to data
dat$cellLine<-"MCF7"
dat@meta.data[which(dat$orig.ident %in% c("TDC1","TDE8")),]$cellLine<-"T47D"
dat$treatment <- "E"
dat@meta.data[which(dat$orig.ident %in% c("M7C1A","M7C2B","TDC1")),]$treatment<-"C"
dat$cellLine_treatment<-paste(dat$cellLine,dat$treatment)
pdf("rna_umap.pdf")
DimPlot(dat, reduction = "umap",group.by=c("seurat_clusters","orig.ident","treatment","cellLine","cellLine_treatment"))
dev.off()
system("slack -F rna_umap.pdf ryan_todo")
Idents(object = dat) <- dat$cellLine_treatment
dat.markers <- FindAllMarkers(dat, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
var_features<-as.data.frame(dat.markers %>%
group_by(cluster) %>%
top_n(n = 10, wt = avg_log2FC))
biolist <- as.data.frame(listMarts())
ensembl=useMart("ensembl")
esemblist <- as.data.frame(listDatasets(ensembl))
ensembl = useDataset("hsapiens_gene_ensembl",mart=ensembl)
filters = listFilters(ensembl)
attributes = listAttributes(ensembl)
t2g<-getBM(attributes=c('external_gene_name','ensembl_gene_id',"ensembl_gene_id_version",'chromosome_name','start_position','end_position'), mart = ensembl)
markers_out <- merge(dat.markers, t2g, by.x="gene", by.y= 'ensembl_gene_id',all.x=T)
pdf("rna_markers.pdf")
plt<-DoHeatmap(dat, features = var_features$gene, size = 4,angle = 90) + NoLegend()
dev.off()
system("slack -F rna_markers.pdf ryan_todo")
markers_out[which(markers_out$gene %in% var_features$gene),]$external_gene_name
# [1] "BCAS1" "TFRC" "TFRC" "EXOSC5" "EDN1" "EDN1"
# [7] "LXN" "CEACAM6" "RAB18" "RAB18" "GLA" "DKK1"
#[13] "PRLR" "PRLR" "EFEMP1" "EFEMP1" "OLFML3" "CNN3"
#[19] "CNN3" "CCN2" "GNG11" "GNG11" "PKIB" "GABBR2"
#[25] "SLC40A1" "SLC40A1" "CYP1A1" "ABHD2" "SLC39A6" "PRSS23"
#[31] "GFRA1" "RCAN1" "RCAN1" "TFF1" "CLDN1" "CLDN1"
#[37] "DEGS2" "DEGS2" "RAB31" "SERPINA6" "ZNF217" "NUPR1"
#[43] "NUPR1" "TMEM64" "ANAPC7" "KRT81" "IGHM" "NEAT1"
#[49] "MIR23AHG"
write.table(dat.markers,sep="\t",col.names=T,quote=F,file="rna_markers.tsv")
saveRDS(dat,"/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/rna/rna_bam/SeuratObject.rds")
#Clustering looks pretty good to me just based on tutorial defaults. Using this seurat object for MOFA analysis, going to recluster using cistopic for RNA
library(Seurat)
library(AnnotationDbi)
library(org.Hs.eg.db)
library(EnsDb.Hsapiens.v86)
library(dplyr)
library(cisTopic)
library(biomaRt) #convert ENSG gene name to chromosome location
setwd("/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/methylation_regions")
dat<-readRDS("/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/rna/rna_bam/SeuratObject.rds")
outname="RNA.gene"
cistopic_counts_frmt<-dat@assays$RNA@counts
biolist <- as.data.frame(listMarts())
ensembl=useMart("ensembl")
esemblist <- as.data.frame(listDatasets(ensembl))
ensembl = useDataset("hsapiens_gene_ensembl",mart=ensembl)
filters = listFilters(ensembl)
attributes = listAttributes(ensembl)
t2g<-getBM(attributes=c('ensembl_gene_id',"ensembl_gene_id_version",'chromosome_name','start_position','end_position'), mart = ensembl)
gene_loc <- merge(data.frame("ensembl_gene_id"=row.names(cistopic_counts_frmt)), t2g, by= 'ensembl_gene_id',all.x=T)
row.names(cistopic_counts_frmt)<-paste0("chr",gene_loc$chromosome_name,":",gene_loc$start_position,"-",gene_loc$end_position)
cistopic_counts_frmt<-cistopic_counts_frmt[!endsWith(row.names(cistopic_counts_frmt),"NA"),]
sub_cistopic<-cisTopic::createcisTopicObject(cistopic_counts_frmt)
sub_cistopic_models<-cisTopic::runWarpLDAModels(sub_cistopic,topic=c(20:40),nCores=20,addModels=FALSE)
pdf(paste(outname,"model_selection.pdf",sep="_"))
par(mfrow=c(3,3))
sub_cistopic_models<- cisTopic::selectModel(sub_cistopic_models, type='derivative')
dev.off()
system(paste0("slack -F ",paste(outname,"model_selection.pdf",sep="_")," ryan_todo"))
dat<-cisTopic::selectModel(sub_cistopic_models,type="derivative",keepModels=T)
dat <- runUmap(dat, target='cell') #running umap using cistopics implementation
dat <- getRegionsScores(dat)
dat <- binarizecisTopics(dat)
dat <- runUmap(dat, target='region') #running umap using cistopics implementation
#add sample cell line names as metadata
dat@cell.data$cellLine<-unlist(lapply(strsplit(row.names(dat@cell.data),"_"),"[",1))
#set up treatment conditions
dat@cell.data$treatment<-substr(unlist(lapply(strsplit(row.names(dat@cell.data),"_"),"[",1)),3,3)
dat@cell.data$batch<-paste(dat@cell.data$cellLine,dat@cell.data$treatment,sep="_")
dat@cell.data[startsWith(dat@cell.data$cellLine,"M7"),]$cellLine<-"MCF7"
dat@cell.data[startsWith(dat@cell.data$cellLine,"TD"),]$cellLine<-"T47D"
dat@cell.data$cellLine_treatment<-paste(dat@cell.data$cellLine,dat@cell.data$treatment)
saveRDS(dat,file=paste(outname,"cistopic_object.Rds",sep="."))
write.table(dat@cell.data,file=paste0(outname,".cellData.tsv"),col.names=T,row.names=T,sep="\t",quote=F)
pdf(paste0(outname,".cistopic_clustering.pdf"))
par(mfrow=c(1,2))
plotFeatures(dat, method='Umap', target='cell', topic_contr=NULL, colorBy=c('cellLine','treatment','cellLine_treatment'), cex.legend = 0.8, factor.max=.75, dim=2, legend=TRUE, col.low='darkgreen', col.mid='yellow', col.high='brown1', intervals=20)
par(mfrow=c(2,5))
plotFeatures(dat, method='Umap', target='cell', topic_contr='Probability', colorBy=NULL, cex.legend = 0.8, factor.max=.75, dim=2, legend=TRUE)
dev.off()
system(paste0("slack -F ",outname,".cistopic_clustering.pdf"," ryan_todo"))
pdf(paste0(outname,".cistopic_clustering.regions.pdf"))
par(mfrow=c(2,5))
plotFeatures(dat, method='Umap', target='region',topic_contr='Probability')
dev.off()
system(paste0("slack -F ",outname,".cistopic_clustering.regions.pdf"," ryan_todo"))
Rscript /home/groups/CEDAR/mulqueen/src/merge_cistopic_methylation.R [argv1] [argv2] [argvN]
This script will merge binarized counts matrices prior to re-running cistopic and plotting.
library(cisTopic)
library(reshape2)
library(GenomicRanges)
library(Matrix)
library(stats)
library(dplyr)
library(ComplexHeatmap)
library(circlize)
library(RColorBrewer)
library(patchwork)
library(GenomeInfoDb)
library(ggplot2)
set.seed(1234)
library(EnsDb.Hsapiens.v86)
library(org.Hs.eg.db)
library(TxDb.Hsapiens.UCSC.hg38.knownGene)
library(data.table)
library(BSgenome.Hsapiens.UCSC.hg38)
library(ChIPseeker)
library(Rphenograph)
setwd("/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/methylation_regions")
args <- commandArgs(trailingOnly=TRUE)
#args<-list()
#args[1]<-"CpG.bcEnhance.cistopic_object.Rds"
#args[2]<-"GpC.promoter.cistopic_object.Rds"
#args[3]<-"CpG.promoter.cistopic_object.Rds"
#args[4]<-"GpC.bcEnhance.cistopic_object.Rds"
#args[5]<-"RNA.gene.cistopic_object.Rds"
#args<-unlist(args)
dat<-lapply(args,readRDS) #read in data as list of cistopic objects
#annotate data regions for interpretability
dat<-lapply(dat,function(x){
annotateRegions(x, txdb=TxDb.Hsapiens.UCSC.hg38.knownGene, annoDb='org.Hs.eg.db')}
)
c_type<-unlist(lapply(args,function(x) strsplit(x,"[.]")[[1]][1])) #extract c type
regions<-unlist(lapply(args,function(x) strsplit(x,"[.]")[[1]][2])) #extract region info
#rename cell names for consistency
dat<-lapply(dat,function(x){
colnames(x@binary.count.matrix)<-unlist(lapply(strsplit(colnames(x@binary.count.matrix),"[.]"),"[",1))
colnames(x@count.matrix)<-unlist(lapply(strsplit(colnames(x@count.matrix),"[.]"),"[",1))
row.names(x@cell.data)<-unlist(lapply(strsplit(row.names(x@cell.data),"[.]"),"[",1))
return(x)
})
#rename cell names for consistency
dat<-lapply(dat,function(x){
colnames(x@count.matrix)<-unlist(lapply(strsplit(colnames(x@count.matrix),"[.]"),"[",1))
colnames(x@count.matrix)<-gsub( "_merged", "", colnames(x@count.matrix) )
colnames(x@count.matrix)<-gsub( "^T_", "TD", colnames(x@count.matrix) )
colnames(x@count.matrix)<-gsub("BSM7E6","M7E6A",colnames(x@count.matrix))
colnames(x@binary.count.matrix)<-unlist(lapply(strsplit(colnames(x@binary.count.matrix),"[.]"),"[",1))
colnames(x@binary.count.matrix)<-gsub( "_merged", "", colnames(x@binary.count.matrix) )
colnames(x@binary.count.matrix)<-gsub( "^T_", "TD", colnames(x@binary.count.matrix) )
colnames(x@binary.count.matrix)<-gsub("BSM7E6","M7E6A",colnames(x@binary.count.matrix))
row.names(x@cell.data)<-unlist(lapply(strsplit(row.names(x@cell.data),"[.]"),"[",1))
row.names(x@cell.data)<-gsub( "_merged", "", row.names(x@cell.data) )
row.names(x@cell.data)<-gsub( "^T_", "TD", row.names(x@cell.data) )
row.names(x@cell.data)<-gsub("BSM7E6","M7E6A",row.names(x@cell.data))
colnames(x@count.matrix)<-gsub("_S[0-9]*_L[0-9]*","",colnames(x@count.matrix))
colnames(x@binary.count.matrix)<-gsub("_S[0-9]*_L[0-9]*","",colnames(x@binary.count.matrix))
row.names(x@cell.data)<-gsub("_S[0-9]*_L[0-9]*","",row.names(x@cell.data))
return(x)
})
#i think BSM7E6 was changed to M7E6A (which is reflected in the function above)
#determine shared cells across cistopic objects
cells_to_keep<-Reduce(intersect,lapply(dat,function(x){row.names(x@cell.data)}))
dat_merged<-dat[[1]] #use first element as cistopic object for formatting
#set up merged object
dat_merged@binary.count.matrix<-do.call(rbind,
lapply(1:length(dat),function(x){
row.names(dat[[x]]@binary.count.matrix)<-paste(c_type[x],regions[x],dat[[x]]@region.data$SYMBOL,row.names(dat[[x]]@binary.count.matrix),sep="_")
tmp<-dat[[x]]@binary.count.matrix[,cells_to_keep]
return(tmp)}))
dat_merged@count.matrix<-do.call(rbind,
lapply(1:length(dat),function(x){
row.names(dat[[x]]@count.matrix)<-paste(c_type[x],regions[x],dat[[x]]@region.data$SYMBOL,row.names(dat[[x]]@count.matrix),sep="_")
tmp<-dat[[x]]@count.matrix[,cells_to_keep]
return(tmp)}))
dat_merged@region.data<-do.call(rbind,lapply(1:length(dat),function(x){
tmp<-dat[[x]]@region.data
row.names(tmp)<-paste(c_type[x],regions[x],dat[[x]]@region.data$SYMBOL,row.names(tmp),sep=".")
tmp<-tmp[c("seqnames","start","end","width","nCounts","nCells","annotation","geneChr","geneEnd","geneLength","geneStrand","geneId","transcriptId","distanceToTSS","ENSEMBL","SYMBOL","GENENAME")]
return(tmp)}))
dat_merged@cell.names<-colnames(dat_merged@binary.count.matrix)
dat_merged@cell.data<-dat_merged@cell.data[which(cells_to_keep %in% row.names(dat[[1]]@cell.data)),]
#run warp lda and overwrite dat object
dat <- runWarpLDAModels(dat_merged, topic=c(5:15, 20, 25, 40, 50), seed=123, nCores=14, addModels=FALSE,tmp="/home/groups/CEDAR/mulqueen/temp/")
#set up output name by
out_name<-paste(unlist(lapply(1:length(c_type), function(i) paste(c_type[i],regions[i],sep="_"))),collapse=".")
#select best model
pdf(paste(out_name,"cistopic_model_selection.pdf",sep="."))
par(mfrow=c(3,3))
dat <- selectModel(dat, type='maximum')
dat <- selectModel(dat, type='perplexity')
dat <- selectModel(dat, type='derivative')
dev.off()
system(paste0("slack -F ",paste(out_name,"cistopic_model_selection.pdf",sep=".")," ryan_todo") )
#going with topics counts based on derivative
dat<-cisTopic::selectModel(dat,type="derivative",keepModels=T)
dat <- runUmap(dat, target='cell') #running umap using cistopics implementation
#run phenogram based clustering on the dim reduction
Rphenograph_out <- Rphenograph(t(dat@selected.model$document_expects), k = 100)
modularity(Rphenograph_out[[2]])
membership(Rphenograph_out[[2]])
dat@cell.data$phenograph_cluster <- factor(membership(Rphenograph_out[[2]]))
#add sample cell line names as metadata
dat@cell.data$cellLine<-"MCF7"
dat@cell.data[startsWith(dat@cell.names,"T"),]$cellLine<-"T47D"
dat@cell.data$batch<-unlist(lapply(strsplit(dat@cell.names,"_"),"[",1))
#treatment
dat@cell.data$treatment<-"control"
dat@cell.data[which(dat@cell.data$batch %in% c("TDE8","M7E6A","M7E4C")),]$treatment<-"estrogen"
dat@cell.data$cellLine_treatment<-paste(dat@cell.data$cellLine,dat@cell.data$treatment)
pdf(paste(out_name,"combined.cistopic.clustering.pdf",sep="."))
par(mfrow=c(2,2))
plotFeatures(dat, method='Umap', target='cell', topic_contr=NULL, colorBy=c('cellLine_treatment','treatment','cellLine','phenograph_cluster'), cex.legend = 0.8, factor.max=.75, dim=2, legend=TRUE, intervals=20)
par(mfrow=c(2,5))
plotFeatures(dat, method='Umap', target='cell', topic_contr='Probability', colorBy=NULL, cex.legend = 0.8, factor.max=.75, dim=2, legend=TRUE)
dev.off()
system(paste0("slack -F ",paste(out_name,"combined.cistopic.clustering.pdf",sep="."), " ryan_todo") )
saveRDS(dat,file=paste(out_name,"cistopic_object.Rds",sep="."))
topicmat<-as.data.frame(dat@selected.model$document_expects)
write.table(topicmat,file=paste0(out_name,".cellbytopic.cistopic.tsv"),col.names=T,row.names=T,sep="\t",quote=F)
topicmat<-as.data.frame(t(scale(t(topicmat))))
cellline_annot<-dat@cell.data$cellLine
treatment_annot<-dat@cell.data$treatment
c_count_annot<-dat@cell.data$CG_total_count
cellline_treatment_annot<-dat@cell.data$batch
cluster_annot<-dat@cell.data$phenograph_cluster
#color function
col_fun=colorRamp2(quantile(unlist(topicmat),c(0.1,0.2,0.3,0.5,0.6,0.8,0.9),na.rm=T),
c("#336699","#99CCCC","#CCCCCC","#CCCC66","#CC9966","#993333","#990000"))
#Plot heatmap topic
row.names(topicmat)<-paste0("Topic_",row.names(topicmat))
plt1<-Heatmap(topicmat,
name="Z-score",
show_column_names=F,
bottom_annotation=columnAnnotation(cellline=cellline_annot,treatment=treatment_annot,C_covered=c_count_annot,batch=cellline_treatment_annot, cluster=cluster_annot,
col = list(cellline = c("T47D"="red","MCF7"="blue"),
treatment = c("control" = "white", "estrogen" = "black"))))
pdf(paste0(out_name,".cistopic_heatmap.pdf"))
plt1
dev.off()
system(paste0("slack -F ",out_name,".cistopic_heatmap.pdf", " ryan_todo") )
#set up region scores to get important features per topic
dat <- getRegionsScores(dat, method='NormTop', scale=TRUE)
dat <- binarizecisTopics(dat, thrP=0.975, plot=TRUE)
dat <- runUMAP(cisTopicObject, target='region', perplexity=200, check_duplicates=FALSE)
pdf(paste0(out_name,".cistopic_region_umap.pdf"))
############TO ADD###############
# add what kind of region it is to the region based UMAP for coloring
par(mfrow=c(1,2))
plotFeatures(cisTopicObject, method='UMAP', target='region', topic_contr=NULL, colorBy=c('nCounts', 'nCells'), cex.legend = 0.8, factor.max=.75, dim=2, legend=TRUE, col.low='darkgreen', col.mid='yellow', col.high='brown1', intervals=10)
par(mfrow=c(2,5))
plotFeatures(cisTopicObject, method='UMAP', target='region', topic_contr='Probability', colorBy=NULL, cex.legend = 0.8, factor.max=.75, dim=2, legend=TRUE)
dev.off()
system(paste0("slack -F ",out_name,".cistopic_region_umap.pdf", " ryan_todo") )
saveRDS(dat,file=paste(out_name,"cistopic_object.Rds",sep="."))
reg=("CpG.gene.cistopic_object.Rds CpG.promoter.cistopic_object.Rds CpG.enhancer.cistopic_object.Rds" "GpC.gene.cistopic_object.Rds GpC.promoter.cistopic_object.Rds GpC.enhancer.cistopic_object.Rds" "CpG.bcEnhance.cistopic_object.Rds GpC.bcEnhance.cistopic_object.Rds" "CpG.bcEnhance.cistopic_object.Rds GpC.promoter.cistopic_object.Rds CpG.promoter.cistopic_object.Rds GpC.bcEnhance.cistopic_object.Rds" "CpG.gene.cistopic_object.Rds GpC.gene.cistopic_object.Rds" "CpG.enhancer.cistopic_object.Rds GpC.enhancer.cistopic_object.Rds" "CpG.promoter.cistopic_object.Rds GpC.promoter.cistopic_object.Rds" "CpG.enhancer.cistopic_object.Rds GpC.promoter.cistopic_object.Rds CpG.promoter.cistopic_object.Rds GpC.enhancer.cistopic_object.Rds""CpG.gene.cistopic_object.Rds CpG.promoter.cistopic_object.Rds CpG.enhancer.cistopic_object.Rds RNA.gene.cistopic_object.Rds" "GpC.gene.cistopic_object.Rds GpC.promoter.cistopic_object.Rds GpC.enhancer.cistopic_object.Rds RNA.gene.cistopic_object.Rds" "CpG.bcEnhance.cistopic_object.Rds GpC.bcEnhance.cistopic_object.Rds RNA.gene.cistopic_object.Rds" "CpG.bcEnhance.cistopic_object.Rds GpC.promoter.cistopic_object.Rds CpG.promoter.cistopic_object.Rds GpC.bcEnhance.cistopic_object.Rds RNA.gene.cistopic_object.Rds" "CpG.gene.cistopic_object.Rds GpC.gene.cistopic_object.Rds RNA.gene.cistopic_object.Rds" "CpG.enhancer.cistopic_object.Rds GpC.enhancer.cistopic_object.Rds RNA.gene.cistopic_object.Rds" "CpG.promoter.cistopic_object.Rds GpC.promoter.cistopic_object.Rds RNA.gene.cistopic_object.Rds" "CpG.enhancer.cistopic_object.Rds GpC.promoter.cistopic_object.Rds CpG.promoter.cistopic_object.Rds GpC.enhancer.cistopic_object.Rds RNA.gene.cistopic_object.Rds")
outname=("CpG.gene.CpG.promoter.CpG.enhancer" "GpC.gene.GpC.promoter.GpC.enhancer" "CpG.bcEnhance.GpC.bcEnhance" "CpG.bcEnhance.GpC.promoter.CpG.promoter.GpC.bcEnhance" "CpG.gene.GpC.gene" "CpG.enhancer.GpC.enhancer" "CpG.promoter.GpC.promoter" "CpG.enhancer.GpC.promoter.CpG.promoter.GpC.enhancer" "CpG.gene.CpG.promoter.CpG.enhancer.RNA.gene" "GpC.gene.GpC.promoter.GpC.enhancer.RNA.gene" "CpG.bcEnhance.GpC.bcEnhance.RNA.gene" "CpG.bcEnhance.GpC.promoter.CpG.promoter.GpC.bcEnhance.RNA.gene" "CpG.gene.GpC.gene.RNA.gene" "CpG.enhancer.GpC.enhancer.RNA.gene" "CpG.promoter.GpC.promoter.RNA.gene" "CpG.enhancer.GpC.promoter.CpG.promoter.GpC.enhancer.RNA.gene")
for i in "${!reg[@]}"; do
printf '#!/bin/bash
#SBATCH --nodes=1 #request 1 node
#SBATCH --tasks-per-node=1 ##we want our node to do N tasks at the same time
#SBATCH --cpus-per-task=20 ##ask for CPUs per task (5 * 8 = 40 total requested CPUs)
#SBATCH --mem-per-cpu=12gb ## request gigabyte per cpu
#SBATCH --time=5:00:00 ## ask for 1 hour on the node
#SBATCH --
srun Rscript /home/groups/CEDAR/mulqueen/src/merge_cistopic_methylation.R %s ' "${reg[i]}" > "cistopic.${outname[i]}.slurm.sh" ; done
sbatch cistopic.CpG.gene.CpG.promoter.CpG.enhancer.slurm.sh
sbatch cistopic.GpC.gene.GpC.promoter.GpC.enhancer.slurm.sh
sbatch cistopic.CpG.bcEnhance.GpC.bcEnhance.slurm.sh
sbatch cistopic.CpG.bcEnhance.GpC.promoter.CpG.promoter.GpC.bcEnhance.slurm.sh
sbatch cistopic.CpG.gene.GpC.gene.slurm.sh
sbatch cistopic.CpG.enhancer.GpC.enhancer.slurm.sh
sbatch cistopic.CpG.promoter.GpC.promoter.slurm.sh
#rna included
sbatch cistopic.CpG.enhancer.GpC.enhancer.RNA.gene.slurm.sh
sbatch cistopic.CpG.promoter.GpC.promoter.RNA.gene.slurm.sh
sbatch cistopic.GpC.gene.GpC.promoter.GpC.enhancer.RNA.gene.slurm.sh
sbatch cistopic.CpG.bcEnhance.GpC.bcEnhance.RNA.gene.slurm.sh
sbatch cistopic.CpG.bcEnhance.GpC.promoter.CpG.promoter.GpC.bcEnhance.RNA.gene.slurm.sh
sbatch cistopic.CpG.gene.GpC.gene.RNA.gene.slurm.sh
sbatch cistopic.CpG.enhancer.GpC.enhancer.RNA.gene.slurm.sh
sbatch cistopic.CpG.promoter.GpC.promoter.RNA.gene.slurm.sh
sbatch cistopic.CpG.enhancer.GpC.promoter.CpG.promoter.GpC.enhancer.RNA.gene.slurm.sh
Note: this takes up a lot of memory
library(readr)
library(dplyr)
library(GenomicRanges)
library(parallel)
library(ggplot2)
library(AnnotationDbi)
library(org.Hs.eg.db)
library(EnsDb.Hsapiens.v86)
read_cov<-function(infile){
print(paste("Reading in",infile))
d<- as.data.frame(read_tsv(infile,col_names=c("chr","start","end","perc","met","unmet")))
d<-makeGRangesFromDataFrame(d,keep.extra.columns=T,ignore.strand=T)
return(d)}
summarize_met_over_tiles<-function(x){
hits <- GenomicRanges::findOverlaps(dat[[x]], reg_tiled)
xhits <- dat[[x]][queryHits(hits)]
yhits <- reg_tiled[subjectHits(hits)]
dat_tmp<-data.frame(feature=yhits$feat_name,tile=yhits$tile,met=xhits$met,unmet=xhits$unmet)
dat_tmp<- as.data.frame(dat_tmp %>% group_by(tile) %>% summarize(met=sum(met),unmet=sum(unmet)))
dat_tmp$cell_name<-names(dat)[x]
return(dat_tmp)}
summarize_met_over_tiles_feat<-function(x){
hits <- GenomicRanges::findOverlaps(dat[[x]], reg_tiled)
xhits <- dat[[x]][queryHits(hits)]
yhits <- reg_tiled[subjectHits(hits)]
dat_tmp<-data.frame(feature=yhits$feat_name,tile=yhits$tile,met=xhits$met,unmet=xhits$unmet)
dat_tmp<- as.data.frame(dat_tmp %>% group_by(tile,features) %>% summarize(met=sum(met),unmet=sum(unmet)))
dat_tmp$cell_name<-names(dat)[x]
return(dat_tmp)}
#variables
in_dir="/home/groups/CEDAR/mulqueen/projects/nmt/nmt_test/bismark_cov_out"
reg_in="/home/groups/CEDAR/mulqueen/ref/refdata-gex-GRCh38-2020-A/genes/genes.bed"
tile_n=200
c_context="CpG" #GpC or CpG
out_reg_name="gene"
#set up cell names
setwd(in_dir)
infile_list<-list.files(in_dir, pattern=paste0(".NOMe.",c_context,".cov.gz$"))
infile_names<-unlist(lapply(1:length(infile_list),function(x){strsplit(infile_list,"[.]")[[x]][1]}))
#add sample cell line names as metadata
annot<-data.frame(cell_name=infile_names)
annot$cellLine<-unlist(lapply(strsplit(annot$cell_name,"_"),"[",1))
annot$treatment<-substr(unlist(lapply(strsplit(annot$cell_name,"_"),"[",2)),1,1) #set up T47D cell treatment first
annot[startsWith(annot$cellLine,"M7"),]$treatment<-substr(annot[startsWith(annot$cellLine,"M7"),]$cellLine,3,3)
annot[startsWith(annot$cellLine,"BSM7"),]$treatment<-substr(annot[startsWith(annot$cellLine,"BSM7"),]$cellLine,5,5)
annot$cellLine_treatment<-paste(annot$cellLine,annot$treatment,sep="_")
annot[annot$cellLine %in% c("BSM7E6","M7C1A","M7C2B","M7E4C"),]$cellLine<-"MCF7" #clean up metadata a bit more
annot[annot$cellLine %in% c("T"),]$cellLine<-"T47D"
annot[annot$treatment %in% c("C"),]$treatment<-"control"
annot[annot$treatment %in% c("E"),]$treatment<-"estrogen"
####set up regulatory sites#######
reg_bed<-read_tsv(reg_in,col_names=c("chr","start","end","name")) #add upstream and downstream expansion (TODO)
reg_bed<-reg_bed[reg_bed$chr %in% (paste0("chr",c(1:22,"X"))),] #limit to autosomes and X chr
reg<-makeGRangesFromDataFrame(reg_bed,keep.extra.columns=T,ignore.strand=T) #make granges
#reg<-reduce(reg) #this line removes the gene names, causes a bug
#reg<-reg+expand_bp #expand gene ranges
#for gene body
reg<-reg[width(reg@ranges)>=1000]
reg_tiled_list<-tile(reg, n=tile_n) #tile genes into 100 equally spaced sites (can also provide width for bp steps)
names(reg_tiled_list)<-reg$name
reg_tiled<-unlist(reg_tiled_list) #unlist back into single granges
reg_tiled$tile<-c(1:tile_n)
reg_tiled$feat_name<-names(reg_tiled) #add gene name to tile
#for TFS
#reg_tiled_list<-resize(reg, width = 50+(50*2), fix = "center") #resize centered
#reg_tiled_list<-tile(reg_tiled_list, width=1) #tile genes by 100 bp steps
#names(reg_tiled_list)<-reg$name
#reg_tiled<-unlist(reg_tiled_list) #unlist back into single granges
#reg_tiled$tile<-c(1:150)
#reg_tiled$feat_name<-names(reg_tiled) #add gene name to tile
####set up data#######
dat<-mclapply(infile_list,read_cov,mc.cores=20) #read in cov data and make Grangeslist
passing_list<-unlist(lapply(dat,function(x) is(x,"GRanges")))
dat<-dat[passing_list] #NOTE there is an error reading in GpC data for some reason. For now just removing the failing cells
dat<-GRangesList(dat)
names(dat)<-infile_names[passing_list] #set list names
dat_tiled<-mclapply(1:length(dat),summarize_met_over_tiles,mc.cores=5) #sum methylation data over tiles (can use multicore also)
names(dat_tiled)<-names(dat)
dat_tiled<-do.call("rbind",dat_tiled)
dat_tiled<-merge(dat_tiled,annot,by="cell_name")
#summarize by cell line and treatment
dat<-as.data.frame(dat_tiled %>% group_by(cellLine,treatment,tile) %>% summarize(met=sum(met),unmet=sum(unmet)))
dat$met_perc<-(dat$met/(dat$met+dat$unmet))*100
#plot along the tiled feature
plt<-ggplot(dat,aes(x=as.numeric(tile),y=met_perc,color=paste(cellLine,treatment)))+geom_smooth(span=0.1)+theme_minimal()+ylim(c(0,100))
ggsave(plt,file=paste(out_reg_name,c_context,"metsummary.pdf",sep="."))
system(paste0("slack -F ",paste(out_reg_name,c_context,"metsummary.pdf",sep=".")," ryan_todo"))
# #summarize by cell line and treatment
# dat_feat<-as.data.frame(dat_tiled %>% group_by(cellLine,treatment,tile,feature) %>% summarize(met=sum(met),unmet=sum(unmet)))
# #convert gene names to symbols in counts data
# genenames<-AnnotationDbi::select(org.Hs.eg.db, keys = dat_feat$feature, keytype = 'ENSEMBL', columns = 'SYMBOL',multiVals=first)
# dat_feat<-merge(dat_feat,genenames,by.x="feature",by.y="ENSEMBL")
# dat_feat$met_perc<-(dat_feat$met/(dat_feat$met+dat_feat$unmet))*100
# #plot along the tiled feature
# plt<-ggplot(dat_feat[dat_feat$feature=="ENSG00000136826",],aes(x=as.numeric(tile),y=met_perc,color=paste(cellLine,treatment)))+geom_smooth(span=0.1)+theme_minimal()
# ggsave(plt,file=paste(out_reg_name,c_context,"metsummary.pdf",sep="."))
# system(paste0("slack -F ",paste(out_reg_name,c_context,"metsummary.pdf",sep=".")," ryan_todo"))
Add tf List from chromvar
library(EnsDb.Hsapiens.v86)
library(Matrix)
library(JASPAR2020)
library(TFBSTools)
library(BSgenome.Hsapiens.UCSC.hg38)
tfList <- getMatrixByID(JASPAR2020, ID=row.names(atac_sub@assays$chromvar@data))
tfList <-unlist(lapply(names(tfList), function(x) name(tfList[[x]])))